
INTEL CORP. 3065 Bowers Avenue, Santa Clara, California 95051 • (408) 246-7501

MCST~8 Assembly
Language Programming

Manual
PRELIMINARY EDITION

November 1973

© Intel Corporation 1973

-- TABLE OF CONTENTS --

8008 PROGRAMMING MANUAL

1.0 INTRODUCTION

2.0 COMPUTER ORGANIZATION

2.1 THE CENTRAL PROCESSING UNIT

2.1.1 WORKING REGISTERS
2. 1 .2 THE STACK
2.1.3 ARITHMETIC AND LOGIC UNIT

2.2 MEMORY
2.3 COMPUTER PROGRAM REPRESENTATION IN MEMORY
2.4 MEMORY ADDRESSING

2.4.1 DIRECT ADDRESSING
2 .4 .2 INDEXED ADDRESSING
2.4.3 INDIRECT ADDRESSING
2.4.4 IMMEDIATE ADDRESSING
2.4.5 SUBROUTINES AND USE OF THE STACK FOR

ADDRESSING

2.5 CONDITION BITS

2.5.1 CARRY BIT
2 .5 • 2 SIGN BIT
2 .5 . 3 ZERO BIT
2 • 5 . 4 PARITY BIT

3.{) THE 8008 INSTRUCTION SET

3.1 ASSEMBLY LANG UAGE

3.1.1 HOW ASSEMBLY LANGUAGE IS USED
3.1.2 STATEMENT MNEMONICS
3 • 1. 3 LABEL FIELD
3.1.4 CODE FIELD
3 • 1 .5 OPERAND FIELD
3.1.6 COMMENT FIELD

i

Page No.

1-1

2-1

2-3

2-3
2-5
2-7

2-8
2-8
2-10

2-11
2-13
2-13
2-14

2-15

2-18

2-18
2-19
2-19
2-20

3-1

3-1

3-1
3-4
3-5
3-7
3-7
3-15

Page No.

3.2 DATA STATEMENTS 3-15

3.2.1 TWO'S COMPLEMENT 3-16
3.2.2 DB DEFINE BYTE(S) OF DATA 3-20
3.2.3 DW DEFINE WORD (TWO BYTES) OF DATA 3-21
3.2.4 DS DEFINE STORAGE (BYTES) 3-22

3.3 SINGLE REGISTER INSTRUCTIONS 3-23

3.3.1 INR INCREMENT REGISTER 3-24
3.3.2 DCR DECREMENT REGISTER 3-24

3.4 MOV INSTRUCTION 3-25
3.5 REGISTER OR MEMORY TO ACCUMULATOR INSTRUCTIONS 3-28

3.5.1 ADD ADD REGISTER OR MEMORY TO ACCUMULATOR 3-29
3.5.2 ADC ADD REGISTI:R OR MEMORY TO ACCUMULATOR

WITH CARRY 3-31
3.5.3 SUB SUBTRACT REGISTER OR MEMORY FROM

ACCUMULATOR 3-32
3.5.4 SBB SUBTRACT REGISTER OR MEMORY FROM

ACCUMULATOR WITH BORROW 3-34
3.5.5 ANA LOGICAL" AND" REGISTER OR MEMORY

WITH ACCUMULATOR 3-36
3.5.6 XRA EXCLUSIVE - OR REGISTER OR MEMORY WITH

ACCUMULATOR (ZERO ACCUMULATOR) 3-37
3.5.7 ORA LOGICAL" OR" REGISTER OR MEMORY WITH

ACCUMULATOR 3-40
3.5.8 CMP COMPARE REGISTER OR MEMORY WITH

ACCUMULATOR 3-41

3.6 ROTATE ACCUMULATOR INSTRUCTIONS 3-43

3.6.1 RLC ROTATE ACCUMULATOR LEFT 3-44
3.6.2 RRC ROTATE ACCUMULATOR RIGHT 3-45
3.6.3 RAL ROTATE ACCUMULATOR LEFT THROUGH CARRY 3-46
3.6.4 RAR ROTATE ACCUMULATOR RIGHT THROUGH CARRY 3-47

ii

Page No.

3.7 IMMEDIATE INSTRUCTIONS 3-49

3.7.1 MVI MOVE IMMEDIATE DATA 3-50
3.7.2 ADI ADD IMMEDIATE TO ACCUMULATOR 3-51
3.7.3 ACI ADD IMMEDIATE TO ACCUMULATOR WITH CARRY 3-53
3.7.4 SUI SUBTRACT IMMEDIATE FROM ACCUMULATOR 3-54
3.7.5 SBI SUBTRACT IMMEDIATE FROM ACCUMULATOR

WITH BORROW 3-55
3.7.6 ANI AND IMMEDIATE WITH ACCUMULATOR 3-57
3.7.7 XRI EXCLUSIVE - OR IMMEDIATE WITH ACCUMU-

LATOR 3-58
3.7.8 o RI OR IMMEDIATE WITH ACCUMULATOR 3-59
3.7.9 CPI COMPARE IMMEDIATE WITH ACCUMULATOR 3-60

3.8 JUMP INSTRUCTIONS 3-61

3.8.1 JMP JUMP 3-62
3.8.2 JC JUMP IF CARRY 3-64
3.8.3 INC JUMP IF NO CARRY 3-65
3.8.4 JZ JUMP IF ZERO 3-65
3.8.5 INZ JUMP IF NOT ZERO 3-66
3.8.6 JM JUMP IF MINUS 3-66
3.8.7 JP JUMP IF POSITIVE 3-67
3.8.8 JPE JUMP IF PARITY EVEN 3-67
3.8.9 IPO JUMP IF PARITY ODD 3-68

3.9 CALL SUBROUTINE INSTRUCTIONS 3-70

3.9.1 CALL 3-71
3.9.2 CC CALL IF CARRY 3-72
3.9.3 CNC CALL IF NO CARRY 3-72
3.9.4 CZ CALL IF ZERO 3-73
3.9.5 CNZ CALL IF NOT ZERO 3-74
3.9.6 CM CALL IF MINUS 3-7

3.9.7 CP CALL IF PLUS
3.9.8 CPE CALL IF PARITY EVEN
3.9.9 CPO CALL IF PARITY ODD

iii

4.0

3.10 RETURN FROM SUBROUTINE INSTRUCTIONS

3. 10. 1 RET RETURN
3. 10. 2 RC RETURN IF CARRY
3.10.3 RNC RETURN IF NO CARRY
3.10.4 RZ RETURN IF ZERO
3.10.5 RNZ RETURN IF NOT ZERO
3.10. 6 RM RETURN IF MINUS
3.10.7 RP RETURN IF PLUS
3.10.8 RPE RETURN IF PARITY EVEN
3.10.9 RPO RETURN IF PARITY ODD

3.11 RST INSTRUCTION
3.12 INPUT/OUTPUT INSTRUCTIONS

3 • 1 2. 1 IN INPUT
3.12.2 OUT OUTPUT

3.13 HLT HALT INSTRUCTION
3.14 PSEUDO - INSTRUCTIONS

3.14.1 ORG ORIGIN
3.14.2 EQU EQUATE
3.14.3 SET
3.14.4 END END OF ASSEMBLY
3.14.5 IF AND ENDIF CONDITIONAL ASSEMBLY
3.14.6 MACRO AND ENDM MACRO DEFINITION

PROGRAMMING WITH MACROS

4.1 WHAT ARE MAC ROS?
4.2 MACRO TERMS AND USE

4.2.1 MACRO DEFINITION
4.2.2 MACRO REFERENCE OR CALL
4.2.3 MACRO EXPANSION
4.2.4 PARAMETER SUBSTITUTION

4.3 REASONS FOR USING MACROS

1v

Page No.

3-78

,3;:::79
3-79
3-80
3-80
3-81
3-81
3-82
3-83
3-83

3-84
3-85

3-86
3-87

3-88
3-89

3-90
3-91
3-93
3-94
3-95 .
3-96

4-1

4-1
4-5

4-5
4-7
4-8
4-9

4-14

Page No.

4.4 USEFUL MACROS 4-15

4.4.1 LOAD ADDRESS MACRO 4-15
4.4.2 LOAD INDIRECT MACRO (WITHOUT SUBROUTINES) 4-16·
4.4.3 MEMORY INCREMENT SUBROUTINE AND LOAD

INDIRECT MACRO (WITH SUBROUTINE) 4-17
4.4.4 OTHER INDIRECT ADDRESSING MACROS 4-20
4.4.5 CREATE INDEXED ADDRESS MACRO 4-20

5.0 PROGRAMMING TECHNIQUES

5.1 BRANCH TABLES PSEUDOSUBROUTINE
5.2 SOFTWARE MULTIPLY AND DIVIDE
5.3 MULTIBYTE ADDITION AND SUBTRACTION
5.4 SUBROUTINES
5.5 TRANSFERRING DATA TO SUBROUTINES

6.0 INTERRUPTS

APPENDIX "A"
APPENDIX "B"
APPENDIX "C"
APPENDIX "D"
APPENDIX "E"

INSTRUCTION SUMMARY
INSTRUCTION MACHINE CODES
INSTRUCTION EXECUTION TIMES
ASCII TABLE
BINARY-DECIMAL-HEXADECIMAL CONVERSION
TABLES

v

5-1

5-1
5-4
5-9
5-13
5-15

6-1

A-I
B-1
C-l
D-l

E-l

TERMS

Address

Bit

Byte

Console

Instruction

Obj ect Program

Program

Source Program

System Program

User Program

-- TERMS --

DESCRIPTION

A 14 bit number assigned to a memory location cor­
responding to its sequent~al position.

The smallest unit of information which can be repre­
s ented. (A bit may be in one of two states, o· or I).

A group of 8 contiguous bits occupying a single memory
location.

The INTELLEC 8 front panel, containing switches and
indicators that allow a user to operate the computer
and monitor program execution.

The smallest single operation that the computer can
be directed to execute.

A program which can be loaded directly into the computer's
memory and which requires no alteration before execution.
An object program is usually on paper tape, and is pro­
duced by assembling (or compiling) a source program.
Instructions are represented by binary machine code in
an object program.

A sequence of instructions which, taken as a group,
allow the computer to accomplish a desired task.

A program which is readable by a programmer but which
must be transformed into object program format before it
can be loaded into the computer and executed. Instruc­
tions in an assembly language source program are re­
presented by their assembly language mnemonic.

A program written to help in the process of creating
user programs.

A program written by the user to make the computer
perform any desired task.

TERMS

Word

nnnnB

nnnnD

nnnnO

nnnnQ

ijklH

A group of 16 contiguous bits occupying two
successive memory locations. (2 bytes).

nnnn represents a number in binary format.

nnnn represents a number in decimal format.

nnnn represents a number in octal format.

nnnn represents a number in octal format.

ijkl represents a number in hexadecimal format.

1 • a INTRODUCTION

This manual has been written to help a design engineer program the INTEL
8008 microcomputer in assembly language, and to show why it is both ec­
onomical and practical to do so. Accordingly this manual assumes that the
reader has a good understanding of logic, but is completely unfamiliar with
programming concepts.

For those readers who do understand programming concepts, several features of
the INTEL 8008 microcomputer are described below. They include:

• 8-Bit parallel CPU on a single chip.

• 48 instructions, including extensive memory reference
and jump on condition capability.

• Direct addres sing for 16,384 bytes of memory •

• Seven 8-bit registers, and a seven 14-bit re;ister stack.

INTEL 8008 microcomputer users will have widely differing programming needs.
Some users may wish to write a few short programs, while other users may have
extensive programming requirements.

For the user with limited programming needs, three system programs resident
on the INTELLEC 8 are provided; they are an Editor, an Assembler, and a System
Monitor. Use of the INTELLEC 8 and its three system programs is described
in the INTELLEC 8 Operator's Manual.

For the user with extensive programming needs, cross assemblers are available
which allow programs to be generated on any computer having a FORTRAN com­
piler whose word size is 32 bits or greater, limiting INTELLEC 8 use to final
checkout of programs only.

Whether a user's programming needs are limited or extensive, this manual
describes how to wtite efficient assembly language programs that may be
assembled either on the INTELLEC 8, or using a cross assembler.

The experienced programmer should note that the assembly language has a
macro capability which allows users to tailor the assembly language to
individual needs I yet still generate object programs which are compatible.
with any 8008 system. The value of this feature will qu1ckly become apparent
to the inexperienced programmer.

1-1

2. a COMPUTER ORGANIZATION

This section provides the programmer with a functional overview of the
INTELLEC 8 computer. Information is presented in this section at a level
that provides a programmer with necessary background in order to write
efficient programs.

Functionally the computer can be divided into the following three blocks,
a s ill u stra ted in Figure 2 -1 :

• Central Processing Unit
• Memory
• Input/Output and Output Modules

To the programmer, the computer is better represented a s consisting of the
following parts:

(1) Seven working registers in which all data operations actually occur,
and which may therefore be visualized as a conduit through which
all data must flow. The seven working registers form part of the
Central Processing Unit.

(2) A stack, which is a device used to facilitate execution of subroutines I
as described later in this section. The stack forms part of the Central
Processing Unit.

(3) An arithmetic and logic unit which executes instructions and forms part
of the Central Processing Unit.

(4) Memory, which is a pa ssive depository of data and instructions, and
must be addressed, byte by byte, in order to access stored information.

(5) Input/Output, which is the interface between a program and the real,
outside world.

The rest of Section 2 explains how the functional blocks of the 8008 computer
as illustrated in Figure 2-1 support its programming capabilities.

2-1

r-- .. - ---
I
I

~,..; ~11V\<.L. t-i ~
4-l"'\d I t!)~ to.

a.A ~ • ~ r .. l:-e,.",,,.

-.

8 Re~: 5 rl!!'''-$
b~

l~ .. ~
DI -

sto..c K

t t
ll ... te:: QI6 ~ ,
1

h~.~~e .. ~
Pe'l .. ; ~f' ,:.
'.e~ ; S t r -r _:,, __

. l\~ "ish;;.,. E;
~.C> .<;:~, rH
\e~, IS·t.Ql' L

I

i
- - ...,.... <" .. -I

f'''-oH

>

, t--r
~ >

'-___ -1
J:tl PUT /0 VtYvT

...,ot:lvL.~ S

n.~ k.,.....u. ~ ~v...lI ~~~~ fJ r ~ ~J--- ~A-''*' ~

A ~ ~w (Nrl'~,)~ ~-IV~~~_~~~'

2.1 THE CENTRAL PROCESSING UNIT

The entire 8008 Central Processing Unit is constructed on one LSI chip.
It consists of seven working registers, a seven register stack, and logic
to enable the INTELLEC 8 instruction set.

Conceptually, the 8008 is a multi-bus machine. Data transfers within the
CPU take place via an internal data bus. Data transfers between CPU and
memory occur via separate data-from-memory and data-to-memory buses.
Separate data input and output buses provide for communication between
CPU and peripheral devices.

2.1.1 WORKING REGISTERS

The 8008 provides the programmer with an accumulator and six addi-
tional "scratchpad" registers. The special significance of the accumulator is
that it is accessed by nearly all arithmetic and logical instructions, wherea s
only a limited number of data operations can involve the scratchpad registers.

The seven working registers are numbered and referenced via the integers
0, 1, 2, 3, 4, 5, 6; by convention working registers may also be accessed
via the letters A {for the accumulator}, B, C, D, E, Hand L. The Hand L
registers have special significance in that they are used to store memory
addresses, as described in Section 2.4.] .

While in theory working registers could be used by the programmer in any way,
certain types of use either lend themselves to efficient programming, or are
forced on the programmer by the design of the computer. The following working
register assignments are recommended:

2-3

Register A

Registers B, C, D, and E

Registers Hand L

Most mathematical or logical operations act on,
and change the contents of this register. Use
register A as the destination for data operations,
never to save or store data.

Use these registers to transfer data between
program modules, and to store intermediate answers
during extended computations.

Use only for addres sing.

For the novice programmer, the above working register assignments will not yet
be meaningful, but the rationale for having such assignments will become clear
after examining the programming examples of Sections 3 and 4.

2-4

2.1. 2 THE STACK

The stack consists of seven 14 -bit registers used to hold memory addresses.
The concept of memory addresses is described in Section 2.2, but briefly stated,
memory can be visualized as a sequence of bytes (8 bit data units) numbered
sequentially from a to the highest memory byte present. The address of a memory
byte is the same a s its sequential number in memory. Having 14 bits, a stack
register can address up to 16,384 bytes of memory. (Addresses run from a to
11111111111111 B = 3FFFH = 16,383D, providing 16,384 memory addresses),

Stack operations consist of writing an address to the stack, and reading an
address from the stack. In order to understand these operations, it may be
helpful to visualalize the stack as seven registers on the surface of a cylinder,
as shown below:

...--- pOinter

a and b represent any
two memory addresses.

There is no top or bottom to the stack. Every stack register is adjacent to
two other stack registers. The 8008 keeps a pointer to the next stack register
available.

Writing an Address to the Stack:

To perform a stack write operation;

(1) The address is written into the register indicated by the pointer.

(2) The pointer is advanced to the next sequential register.

Any register may be used to hold the first address written to the stack. More
than seven addresses may be written to the stack; however, this will cause a
corresponding number of previously stored addresses to be overwritten und lost.
This is illustrated in Figure 2-2.

2-5

After 6 writes After 7 writes After 8. writes

a a h

b b b

c c c

d d d

e e e

f f f

g g

a I b I C I die I fig I h represent any 8 memory addresses.
.... represents the stack pointer.

FIGURE 2-2.

Stack Write Operations.

Storing the 8th addres s (h) overwrites the first address stored (a).

Reading an address from the stack:

To perform a stack read operation;

(1) The pOinter is backed up one register.

(2) The memory address indicated by the pointer is read.

The address read remains in the stack undisturbed. Thus I if 8 addresses are
written to the stack and then three reads are performed, the stack wi!! appear
as in Figure 2-3.

2-6

First Read: Second Read: Third Read:
Address h is read Address g is read Address f is read

h h h

b b b

c c c

d d d

e e e

b f f ...
g g g

b I C I d,e I f,g I h represent any 7 memory addresses.
... represent the stack pointer.

FIGURE 2-3.

Stack Read Operations.

The stack is zeroed when power is first applied to the 8008 or after a RESET
operation has occurred; thus if a stack read is performed from a stack register
which has not been written, a memory address of 0 will be read.

Section 2.4.5 describes how the stack is used by programs.

2 • 1 .3 ARITHMETIC AND LOGIC UNIT

The arithmetic and logic unit ALU of the 8008 computer provides the logic
for executing instructions. The representation of the ALU in Figure 2-115
sufficient for the programmer, who need know nothing about the ALU in order
to program the 8008.

2-7

2.2 MEMORY

The 8008 can be used with read only memory, programmable read only memory
and read/write memory. A program can cuase data to be read from any type of
memory ,but can only cause data to be written into read/write memory.

The programmer visualizes memory as a sequence of bytes, each of which may
store 8 bits (two hexadecimal digits). Up to 16,384 bytes of memory may be
present, and an individual memory byte is addressed by its sequential number,
between 0 and 16,383. The hexadecimal degits stored in a memory byte may
represent the encoded form of an instruction, or it may be data, as described
in Section 3.2.

2.3 COMPUTER PROGRAM REPRESENTATION IN MEMORY

A computer program consists of a sequence of instructions. Each instruction
enables an elementary operation such a s the movement of a data byte, an
arithmetic or logical operation on a data byte, or a change in instruction
execution sequence. Instructions are described individually in Section 3.

A program will be stored in memory as a sequence of hexadecimal digits which
represent the instructions of the program. The memory address of the next
instruction to be executed is recorded in a 14-bit register called the Program
Counter and thus it is possible to track a program as it is, being executed. Just
before each instruction is executed, the program counter is advunced to the address
of the next sequential instruction. Program execution proceeds sequentially
unless a transfer-of-control instruction (jump or call) is executed, which causes
the program counter to be set to a specified address. Execution then continues
sequentially from this new address in memory.

Upon examining the contents of a memory byte, there is no way of telling
whether- the byte contains an encoded instruction or data. For example, the
hexadecimal code lAR has been arbitrarily selected to encode the instruction
RAR (rotate the contents of the accumulator right through carry); thus, the
value lAR stored in a memory byte could either represent the instruction RAR . ' . or It could represent the data value lAR. It is up to the logic of a program to
insure that data is not misinterpreted as a instruction code, but this is simply
done as follows:

2-8

Every program has a starting memory address, which is the memory address of
the byte holding the first instruction to be executed. Before the first instruction
is executed, the program counter will automatically be advanced to address the
next instruction to be executed, and this procedure will be repeated for every
instruction in the program. 8008 instructions may require I, 2, or 3 bytes to
encode an instruction; in each case the program counter is automatically advanced
to the start of the next instruction, as illustrated in Figure 2-4.

Memory
Address

0212
0213
0214
0215
0216
0217
0218
0219
021A
021B
021C
021D
021E
021F
0220
0221

}

I
I
}
l

I
I

Instruction
Number

1

2

3

4

5

6

7

8
9

10

Program Counter
Contents

0213
0215

0216
0219

021B

021C
021F

0220
0221
0222

Figure 2-4 Automatic Advance of the Program Counter
as Instructions are Executed

In order to avoid errors, the programmer must be sure that a data byte does not
follow an instruction when another instnlctian is expected. Referring to
Figure 2-4, an instruction is expected in byte 021FH, since instruction 8 is
to be executed after instruction 7. If byte 021 FH held data, the program would
not execute correctly. Therefore, when writing a program, do not store data
in between adjacent instructions that are to be executed consecutively.

NOTE: Ita program stores data into a location, that location should not
normally appear among any program instructions. This is because user pro­
grams are normally executed from read-only memory, into which data cannot
be stored.

2-9

A class of instructions (referred to as transfer of control instructions) cause
program execution to branch to an instruction that may be anywhere in memory.
The memory address specified by the transfer of control instruction must be the
address of another instruction; if it is the address of a memory byte holding
data, the program will not execute correctly. For example, referring to Figure 2-4,
say instruction 4 specifies a jump to memory byte 021FH, and say instructions
5, 6 and 7 are replaced by data; then following execution of instruction 4, the
program would execute correctly. Buf if, in error, instruction 4 specifies
a jump to memory byte 021 EH, an error would result, since this byte now holds
data. Even if instructions 5, 6 and 7 were not replaced by data, a jump to
memory byte 02IEH would cause an error, since this is not the first byte of the
instruction.

Upon reading Section 3, you will see that it is easy to avoid writing an assembly
language program with jump instructions that have erroneous memory addresses.
Information on this subj ect is given rather to help the programmer who is debugging
programs by entering hexadecimal codes directly into memory.

2.4 MEMORY ADDRESSING

Each byte in memory has an address which is a 14 bit number corresponding to its
sequential location. Thus the range of addresses is 0 to 16,383 (the highest number
which can be represented in 14 bits). The address of a memory location can Oe
held in memory in two consecutive 8 bit bytes; normally the least significant
8 bits of the address are held in one byte, and the most significant 6 bits of the
address are held in the next byte.

By now it will have become apparent that addressing specific memory bytes
constitutes an important part of any computer program; there are a number of
ways in which this can be done, as described in the following subsections.

2-10

2.4.1 DIRECT ADDRESSING

With direct addressing, as the name implies, an instruction provides an
exact memory address. The following instruction provides an example of
direct addressing:

"Load the contents of memory byte I F2AH into the accumulator (Register A)"

1 F2AH is a direct address. Direct addressing is the principal means used by
the INTELLEC 8 to address memory, and the Hand L registers are used to
hold the direct memory address. For example, the direct addressing instruction
described above might be illustrated as follows:

Arbitrary
Memory
Address

any I
(

Memory

C7

IF29 ~ IF2A
IF2B

instruction being
executed

Reoisters

I f
2 A

The instruction encoded by the digits C7H is being executed, and is, in fact,
interpreted to mean:

A
B
C
D
E
H
L

Load register A (the accumulator) with the contents of the memory byte whose
address is provided by the Hand L registers.

~ and call instructions on the 8008 provide a special case of direct address­
ing I where the direct address is stored in the two consecutive memory bytes
following the instruction code byte. The low order eight bits of the address are
stored in the first (lower addressed) byte I while the high order six bits of the
address are stored in the second (higher addressed) byte.

Thus the instruction:

"Jump to memory location IF22"

would appear in memory as follows:

2-11

Arbitrary Memory
Address

any

any + 1

any + 2

IF20
IF21
IF22
IF23

Memory

44 ------- Jump instruction code
~----I

22 t -Address to which jump is IF, directed

2-12

2.4.2 INDEXED ADDRESSING

An indexed address is computed as the sum of two numbers, a base address
and an index. For example, a table may be one hundred bytes long, in which
case the address of any byte is computed as the address of the table origin
(base address), plus the displacement of the byte from the table origin
(index). On the 8008 the Hand L registers will commonly be used
to hold the base address, while either one or two of the registers B,C,D
and E (but not A) will hold the index. If one index register is used, tables
cannot be longer than 256 bytes. If two registers are used to store the index
portion of the address, tables can be as large as memory. Figure 2-5 illustrates
the concept of indexed addressing.

Arbitrary
Memory
Address
2130
2131
2132
2133
2134

2220
2221
2222
2223

,~

I ,

i~

R i eq: sters

Fl

21
30

Addressed Byte

A
B
C
D Index
E

~} Base Address

Figure 2-5 Indexed Address, Formed by Hand L Register
(Base) Plus D Register (Arbitrarily Selected as
Index Register)

Indexed addressing can easily be accomplished on the 8008 by writing a sequence
of instructions referred to as a Macro. (See Section 4.4).

2.4.3 INDIRECT ADDRESSING

An indirect address specifies where in memory a direct address is to be
found. The concept of indirect addressing I as applied to the 8008 is
illustrated in Figure 2-6.

2-13

Arbitrary
Memory
Address

Memory

any I Instruction being executed ..
.' I Reqisters , I
I I A

OF02 B
OF03 13

!~l
C

OF04 lC D
OFOS E

, I OF H , I
I 03 L

lCll
lC12
lC13 ~I-- This memory byte being referenced
lC14

Figure 2-6 Indirect Addressing

In Figure 2-6, the instruction being executed specifies that the address of the
memory byte to be referenced is stored in two memory bytes pOinted to by the
Hand L registers. The Hand L registers contain the memory address OF03H;
therefore the address of the memory byte to be referenced is to be found in
memory bytes OF03H and OF04H. These two memory bytes hold the address
lCI3H, which becomes the referenced memory location. Note that the address

is stored with the least significant 8 bits in the lower addressed memory location
(OF03H) ,while the most significant 6 bits are stored in the higher addressed
location (OF04H). This is the usual method for storing addresses in the 8008.

Indirect addressing on the 8008 can also be accomplished by writing a macro
a s described in Section 4.4.

2.4.4 IMMEDIATE ADDRESSING

An immediate instruction is one that provides its own data. The following is an
example of immediate addressing:

Load register A (the accumulator) with the value 2 EH.

The above instruction would be coded in memory as follows:

2-14

Memory

06 ... Load accumulator immediate
2E Value to be loaded into accumulator

Immediate instructions do not reference memory; rather they store data in the
memory byte directly following the instruction code byte.

2.4.5 SUBROUTINES AND USE OF THE STACK FOR ADDRESSING

Before understanding the purpose or effectiveness of the stack I it is necessary
to understand the concept of a subroutine.

Consider a frequently used operation such as addition. The INTELLEC 8 pro­
vides instructions to add one byte of data to another byte of data, but what
if you wish to add numbers outside the range of 0 to 255 (the range of one
data byte)? Such addition will require a number of instructions to be exe­
cuted in sequence. It is quite possible that this addition routine may be
required many times within one program; to repeat the identical code every
time it is needed is possible, but very wasteful of memory:

,.
I
I Program
'I

1
-&!Qition

j •

I Program .
Addition

I
1 Program
I

AddItion ,
I
etc

2-15

A more efficient means of accessing the addition routine would be to store
it once, and find a way of accessing it when needed:

Program

Program

Program

I
I

I
I~
I ... 'Mdition -.,............ -
I
I
I
I
l

A frequently accessed routine such a s the addition above is called a sub­
routine, and the 8008 provides instructions that call subroutines and return
from subroutines.

When a subroutine is executed, the sequence of events may be depicted
as follows:

Main Pro ram

Call instruction _________ _

~Subroutine
~~------

The arrows indicate the execution s.equence.

When the "Call" instruction Is executed, the address of the "next" instruc­
tion is written to the stack. (See Section 2.1.2), and the subroutine is exe­
cuted. The last executed instruction of a subroutine will always be a special
"Return Instruction", which reads an address from the stack into the program
counter, and thus causes program execution to continue at the" Next" instruc--

:tion as illustrated on the next page.

2-16

Memory
Address

OC02
OC03
OC04
OCOS
OC06

oroo
OrOl
Or02
OF03

OF4E
OF4F

Instruction

CALL SUBROUTINE
02
or
NEXT INSTRUCTION

Write address of next instruc­
tion OC06H to the stack.

Branch to
subroutines
starting at
OF02H

FIRST SUBROUTINE INSTRUCTION _...----4-.....1
Return to
next instruction

Body of subroutine

RETURN

~ READ return address
(OC06H) from stack

2-]7

Since the stack provides seven registers, subroutines may be nested up to
seven deep; for example, the addition subroutine could itself call some other
subroutine, and so one. An examination of the sequence of write and read
stack operations will show that the return path will always be identical to the
call path, even if the same subroutine is called at more than one level; how­
ever, an attempt to nest subroutines to a depth of more than 7 will cause the
program to fail, since some addresses will have been overwritten.

2.5 CONDITION BITS

To make programming ea sier, four condition (or statu s) bits are provided by
the 8008 to reflect the results of data operations. The descriptions
of individual instructions in Section 3 specify which condition bits are
affected by the execution of the instruction, and whether the execution of the
instruction is dependent in any way on prior status of condition bits.

In the following discussion of condition bits, a bit is "set" to I, and
II reset" to O.

2 . 5. 1 CARRY BIT

Certain data operations can cause un overflow out of the high order 7 - bit.
For example I addition of two numbers I euch of which occupies one byte I can
give rise to an answer that does not fit in one byte:

+ AE

74
122

Carry == 1

76543210
10101110
01110100

00100010

Bit No.

An operation that results in a carry out of bit 7 will set the carry bit.

An operation that could have resulted in a carry out of bit 7 but did not will

2-18

reset the carry bit.

NOTE: The 8008 subtract and compare operations (SUB, SBB I SUI, SBI, CMP,
CMI)" are exceptions to the above rules. See the appropriate sections for details.

2.5.2 SIGN BIT

As described in Section 3.2.1, it is possible to treat a byte of data as having
the numerical range -128 10 to +127 10 , In this case by convention the 7 bit
will always represent the sign of the number; that is, if the 7 bit is 1, the
number is in the range -12810 to -1. If bit 7 is 0, the number is in the range
o to +127 10 ,

At the conclusion of certain instructions (as specified in the instruction descrip­
tion sections of Section 3), the sign bit will be set to the condition of the answer
7 bit in order to reflect the sign of the answer.

2.5.3 ZERO BIT

This condition bit is set if the answer generated by the execution of certain in­
structions leaves a zero result in a register. The zero bit is reset if the result
is not zero.

A result that has an overflow but a zero answer byte, as illustrated below, will
alos set the zero bit:

I

Overflow out ~
of bit 7.

76543210
10100111 +
01011001
00000000

Zero Answer

Zero bit set to 1.

2-19

Bit Number

2.5.4 PARITY BIT

In order to check that a data transfer operation occurred accurately, byte
"parity" is checked. The number of I bits in a byte are counted, and if the
total is odd, "odd" parity is flagged; if the total is even, "even" parity
is flagged.

The parity bit is set to I for even parity, and is set to 0 for odd parity.

2-20

3.0 THE 8008 INSTRUCTION SET

This section describes the 8008 assembly language instruction set.

For the reader who understands assembly language programming, Appendix
"A" provides a complete summary of the 8008 instructions.

For the reader who is not completely familiar with assembly language, Section
3 describes individual instructions with examples and machine code equi­
valents.

3.1 ASSEMBLY LANGUAGE

3.1. 1 HOW ASSEMBLY LANGUAGE IS USED

Upon examining the contents of computer memory I a program would appear as
a sequence of hexadecimal digits I which are interpreted by the CPU as
instruction codes, addresses I or data. It is possible to write a program as
a sequence of digits (just as they appear in memory), but that is slow and
expensive. For example, many instructions reference memory to address
either a data byte or another instruction:

Memory Addres s

1432
1433
1434
1435
1436

14C3
14C4
14CS
l4C6

3-1

112

36
F8

Assuming the registers Hand L contain 14H and C3H respectively, the program
operates as foHows:

Byte 1432 specifies that the accumulator is to be loaded with the contents of
byte 14C 3.

Bytes 1433 through 1435 specify that execution is to continue with the in­
struction starting at byte l4C4.

Bytes 14C4 and 14C5 specify that the L register is to be loaded with the
number "36" H.

Byte 14C6 specifies that the contents of the accumulator are to be stored in
byte 1436.

Now suppose that an error discovered in the program logic necessitates
placing an extra instruction after byte 1432. Program code would have to
change as follows:

Memory Address Old Code New Code

1432 C7 C7
1433 44 New Instruction
1434 C4 44
1435 14 C5
1436 14
1437 .
14"C3 E2
l4C4 36 E2
14C5 36 36
14C6 F8 37
14C7 F8

Most instructions have been moved and as a result many must be changed to
reflect the new memory addresses of instructions or data. The potential
for making mistakes is very high and is aggravated by the complete unreadabi­
lHy of the program.

3-2

Writing programs in assembly language is the first and most significant step
towards economical programming; it provides a readable notation for instruc­
tions, and separates the programmer from a need to know or specify absolute
memory addresses.

Assembly language programs are written as a sequence of instructions which
are converted to executable hexadecimal code by a special program called
an ASSEMBLER. Use of the INTELLEC 8 assembler is described in the
INTELLEC 8 Operator's Manual.

Assembly language Executable hexa-
program written by ASSEMBLER

~
decimal machine

programmer PROGRAM code

SOURCE PROGRAM OBJECT PROGRAM

Figure 3-1

Assembler Program Converts Assembly Language Source Program
to Hexadecimal Object Program

As illustrated in Figure 3-1, the assembly language program generated by a
programmer is called a SOURCE PROGRAM. The assembler converts the
SOURCE PROGRAM into an equivalent OBJECT PROGRAM, which consists of a
sequence of hexadecimal codes that can be loaded into memory and executed.

3-3

For example:

Source Program is converted by the
As sembler to

NOW: MOV A,B

LER:

CPI
JZ

MOV

'C'
LER

M,A

One Possible Version of
the Objectjrogram

Cl
3C43
687C3D

F8

Now if a new instruction must be added, only one change is required. Even
the reader who is not yet familiar with assembly language will see how simple
the addition is:

NOW: MOV A,B
(New instruction inserted here)

CPI 'C'
JZ LER

LER MOV M ,A

The assembler takes care of the fact that a new instruction will shift the rest of
the program in memory.

3.1. 2 STATEMENT MNEMONICS

Assembly language instructions must adhere to a fixed set of rules as described
in this section. An instruction has four separate and distinct parts or FIELDS.

Field 1 is the LABEL field. It is the instruction's label or name I and it is used
to reference the instruction.

3-4

Field 2 is the CODE field, It defines the operation that is to be performed by
the instruction,

Field 3 is· the OPERAND field, It provides either any addres s or data information
needed by the CODE field,

Field 4 is the COMMENT field, It is present for the programmer's convenience
and is ignored by the assembler ,. The programmer uses comment fields to
describe the operation and thus make the program more readable,

The assembler uses free fields; that is, any number of blanks may separate
fields,

Before describing each field in detail, here are some general examples:

Label Code Operand Comment

HERE: MVI C,O Load the C register with zero

THERE: DB 3AR Create a one-byte data constant

LOOP: ADD E Add contents of E register

to the accumulator

RLC Rotate the accumulator left

3.1.3 LABEL FIELD

This is an optional field, which, if present, may be from I to 5 characters long,
The first character of. the label must be a letter of the alphabet or one of the
special characters @ (at sign) or? (question mark). A colon (:) must follow
the last character, (The operation codes, pseudo - instruction names, and
register names are specially defined within the assembler and may not be used
as labels. Operation codes are given in sections 3.2 - 3,13 and Appendix
A; pseudo - instructions are described in section 3,14.)

3-5

Here are some examples of valid label fields:

LABEL:

F14F:

@HERE:

?ZERO:

Here are some invalid labels:

123: begins with a decimal digit

LABeL does not cnd with a colon

ADD: is an operation code

END: is a pseudo - instruction

The following label has more than five characters; only the first five will be
recogniz ed:

INSTRUCTION: will be read as INSTR:

Since labels serve a s instruction addresses, they cannot be duplicated. For
example, the sequence:

HERE: IMP THERE

THERE: MOV C,D

THERE: CALL SUB

is ambiguous; the assembler cannot determine which THERE: address is to be
referenced by the IMP instruction.

One instruction may have more than one label, however. The following sequence

3-6

is valid:

LOOPI: First label

LOOP2: MOV C,D Second label

JMP LOOPI

JMP LOOP2

Each IMP instruction will cause program control to be transferred to the same
MOV instruction.

3.1. 4 CODE FIELD

This field contains a code which identifies the machine operation (add, subtract,
jump, etc.) to be performed: hence the term operation code or op-code. The
instructions described in sections 3.2 - 3.13 are each Identift·3d by a mnemonic
label which must appear in the code field. For example, since the "jump" in­
struction is identified by the letters "JMP", these letters must appear in the
code field to identify the instruction as "jump".

There must be at least one space following the code field. Thus:

HERE: JMP THERE

is legal, but:

HERE: IMPTHERE

is illegal.

3.1. 5 OPERAND FIELD

This field contains information used in conjunction with the code field to define
precisely the operation to be performed by the instruction. Depending upon the
code field, the operand field may be absent or may consist of one item or two
items separated by a comma.

There are four types of information [(a) through (d) below] that may be requested
as items of an operand field, and the information may be specified in nine ways
[(1) through (9) below].

3-7

The nine ways of specifying information are as follows:

(I) Hexad.ecimal data. Each hexadecimal number must be fonowed by the
letter 'H' and must begin with a numeric digit (0 - 9).

Example:

Label Operand Comment

HERE: MVI C,OBAH Load register C with the

hexadecimal number BA

(2) Decimal data. Each decimal number may optionally be followed by the
letter 'D', or may stand alone.

Example:

Label Comment

ABC: MVI E, 105 Load register C with 105

(3) Octal data. ,Each octal number must be followed by one of the letters
'0' or 'Q'.

Example:

Label

LABEL: MVI

3-8

Operand

A, 720

Comment

Load the accumulator with
the octal number 72

(4) Binary data. Each binary number must be followed by the letter 'B'.

Example:

Label Code Operand Comment

NOW: MVI lOB I 11ll01l0B Load register two (the C
register) with OF6H

JUMP: JMP 0010111011111010B Jump to memory address
2EFA

(5) The current program counter. This is specified as the character I $' and
is equal to the address of the current instruction.

Label

GO:

Example:

Operand

JMP $ + 6

The instruction above causes program control to be transferred to the
address 6 bytes beyond where the JMP instruction is loaded.

(6) An ASCII constant. This is one or more ASCII characters enclosed in
Single quotes. Two successive single quotes must be used to represent
one single quote within an ASCII constant. Appendix D contains a list of
legal ASCII characters and their hexadecimal representations.

Example:

Label

CHAR: MVI

Operand

E, '*'

3-9

Comment

Load the E r8Jister with the
eight bit ASCII representation
of an a steri sk

(7) Labels that have been assigned a numeric value by the assembler. (See
section 3.16.2 for the equate procedure). The following equates are built
into the assembler and are therefore always active:

A
B
C
D
E
H
L
M

Exam21e:

Label

AI:
A2:
A3:

equated to 0 representing the accumulator
fI " I " register B
" fI 2 " " C
" " 3 " " D

" " 4 " " E
" " 5 " " H
" " 6 " " L
" " 7 " a memory reference

Suppose VALUE has been equated to the hexadecimal number
9FH. Then the following instructions all load the D register
with 9FH:

MVI
MVI
MVI

°2erand

D, VALUE
3,9FH
3, VALUE

(8) Labels that appear in the label field of another instruction.

Label

HERE:

Exam2le:

THERE:

Code

JMP

MVI

3-10

°2erand

THERE

D,9FH

Comment

Jump to instruction at THERE:

(9) Arithmetic and logical expressions involving data types (1) to (8)
above connected by the arithmetic operators + (addition), - (unary
minus and subtraction), * (multiplication), / (division), MOD
(modulo), the logical operators NOT, AND, OR, XOR, SHR, (shift
right), SHL (shift left), and left and right parentheses.

All operators treat their arguments as 16 bit quantities, and generate 16 bit quan­
tities as their result. The programmer must insure that the result generated fits
the reqUirements of the operation being coded. . For example, the second operand
of an MVI instruction must be an 8 bit value.

Therefore the instruction:

MVI H,NOT 0

is invalid, since NOT 0 produces the 16 bit hexadecimal number FFFF. However,
the instruction:

MVI H, NOT 0 AND OFFH

is valid, since the most significant 8 bits of the result are insured to be 0,
and the result can therefore be represented in 8 bits.

The SHR and SHL operators are linear shifts which cause zeroes to be shifted
into the high order and low order bits, respectively, of their arguments.

NOTE: An instruction in parenthesis isa legal expression in an optional field.
Its value is the encoding of the instruction.

Examples:

Label Operand Arbitrary Memory Addres s

HERE: MVI H, HERE SHR 8 2EIA

The above instruction loads the hexadecimal number 2EH (l4-blt address of HERE
shifted right 8 bits) into the H register.

3-11

Operand

NEXT: MVI D, 34 + 40H/2

The above instruction will load the value 34 + (64/2) = 34 + 32 = 66 into the D
register.

Operand

INS: DB (ADD C)

The above instruction defines a byte of value 82H (the encoding. of ADD C instruc-
tion) at location INS:. .

Operand

NEXT: MVI D, 34 + 40H/2

The above instruction will load the value 34 + (64/2) = 34 + 32 ~ 66 into the D
register.

Operators within an expression are evaluated in the following order:

1. Left and right parentheses
2. *,/, MOD, SHL, SHR
3. +, - (unary and binary)
4. NOT
5. AND
6. OR XOR

Thus the instruction:

MVI D, (34 + 40H) /2

will load the value
(34 + 64) /2 = 49 into the D register.

The operators MOD, SHL, SHR, NOT, AND, OR, and XOR must be separated
from their operands by at least one blank. Thus the instruction:

MVI C, VALUE ANDOPH

is invalid.

Using some or all of the above nine data specifications, the following four types
of information may be requested:

(a) A register (or code indicating memory reference) to serve as the source or
destination in a data operation - Methods I, 2, 3, 4, 7, or 9 may be used
to specify the register or memory reference, but the specification must
finally evaluate to one of the numbers 0 - 7 as follows:

~
o
1
2
3
4
5
6
7

3-12

Register
A (accumulator)
B
C
D
E
H
L
Memory Reference

Example:

Label

INS1:
INS:Z:
INS3:

Code

MVI
MVI

.MVI

Operand

REG4, 2EH
4H, 2EH
8/2, 2EH

Assuming REG4 has been equated to 4, all the above instructions will load
the value 2EH into register 4.

(b) Immediate data, to be used directly as a data item.

Example:

Label Code

HERE: MVI

Operand

H, DATA

Oomment

Load the H register with
the value of DATA

Here are some examples of the form DATA could t(lke:

ADDR AND OFFH (where ADDR is a 14-bit address)
127
'.'
VALUE (where VALUE has been equated to a number) . .

3EH + 10 / (2 AND 2)

(c) A 14 -bit address, or the label of another instruction in memory.

3-13

Label

HERE:

Example:

JMP
JMP

Operand

THERE
2EADH

Comment

rump to the instruction at THERE
Jump to addres s 2 EAD

(d) A number in a specific range, required by certain instructions.

The RST and IN instructions require a number in the range 0 - 7 •

Example:

Label Code ,- Operand Comment

GOOD: RST lUB Value of 7, valid

OK: IN 15 - OAH Value of 5, valid

BAD: RST 10 Value of 10, invalid instruction

The OUT instruction requires a number in the range 8 - 31 decimal.

Label

GOOD:

BAD:

Example:

~

OUT

OUT

, Operand

20 + 11

20 + 11 H

3-14,

Comment

Value 31 decimal, valid

Value 37 decimal, invalid

The INR and DCR instructions require a number in the range 1 - 6, specifying
one of registers B, C, D, E, H, or L.

Example:

Label Operand Comment

OK: INR 4 Increment register E

INR 110B Decrement register L

3.1. 6 COMMENT FIELD

The only rule governing this field is that it must being with a semi colon
(;) .

HERE: MVI C, 0 ADH ; This Is a comment

A comment field may appear alone on a line:

Begin loop here

3.2 DATA STATEMENTS

This section describes ways in which data can be specified in and inter­
preted by a program. Any 8 bit byte contains one of the 256 possible com­
binations of zeros and ones. MY particular combination may be interpreted
in various ways. As previously mentioned, the code IAH may be interPreted
as a machine instruction (Rotate Accumulator Right through Carry), as a
hexidecimal value lAH = 26D, or merely as the bit pattern 00011010

Arithmetic instructions assume that the data bytes upon which they operate are
in a special format called "two's complement", and the operations performed
on these bytes are called "two's complement arithmetic. "

3-15

3.2.1 TWO'S COMPLEMENT

When a byte is interpreted as a signed two's complement number, the low
order 7 bits supply the magnitude of the number, while the high order bit is
interpreted as the sign of the number (0 for positive numbers, 1 for negative) .

The range of positive numbers that can be represented in signed two's com­
plement notation is, therefore, from 0 to 127:

o = 00000000 B = OR

1 = 00000001 B = IH

126D == 011111110 B = 7EH

127D = 011111111 B :::- 7FH

To change the sign of a number represented in two's complement, the following
rules are applied:

(a) Invert each bit of the number (producing the so-called one's
complement) .

(b) Add one to the reSUlt, ignoring any carry out of the high order
bit position.

Example: Produce the two's complement representation of - lOD. Following
the rules above,

+ laD = 0 a a 0 1 0 1 0

Invert each bit 1 1 1 1 01 0 I
Add one 1 1 1 1 a I 1 0

Therefore I the two's complement representation of - IOD is F6H. (Note that
the sign bit is set I indicating a negative number.)

Example: What is the value of 86 H interpreted as a signed two'S complement
number? The high order bit is set, indicating that this is a negative
number. To obtain its value I again invert each bit and add one.

3-16

Invert each bit
Add one

86H = 1 0 0 0 0 1 1 0 8

011110018
011110108

Thus, the value of 86 H is - 7A H = - 122 D

The range of negative numbers that ean be represented in ~gned two's com­
plement notation is from -I to -128.

-I =
- 2 =

-127D =
-128D =

1 III 111 1 8
111111108

10000001B
10000000B

=
=

=
=

FFH
FEH

81H
80H

To perform the subtraction IAH - OCH, the following operations are performed:

Take the two's complement of OCH = F4H

Add the result to the minuend:

+ (-OCH) -
lAH = 0 0 0 1 1 0 1 0
F4H = 1 1 1 1 0 1 0 0

o 0 0 0 1 1 1 0 = OEH the correct answer

When a byte is interpreted as an unsigned two's complement number, its value
is considered positive and in the range 0 to 25510 :

0 = o 0 000 000 8 = OH
1 = o 0 000 001 8 = IH

127D = 01111111 B = 7FH
128D = 1 000 0 0 0 0 8 = 80H

255D = 111111 1 1 B :- FFH

Twois complement arithmetic is still valid. When performing an addition operation,
the earlY bit is set when the result is greater than 255D. When performing sub­
traction, the cafIY bit is reset when the result is positive. If the carry bit is
set, the result is negative and present in its two's complement form.

3-17

Example: Subtract 98D from 197D using unsigned two's complement arithmetic.

197D =
-98D =

1 1 0 0 0 1 0 1 = C5 H
1 0 0 1 1 1 1 0 = 9 EH

Overflow "1 o 1 1 0 0 0 1 1 = 63H = 99D

Since the overflow out of bit 7=1, indicating that the answer is correct and
positive, the subtract operation will reset the carry bit.

Example: Subtract 15D from 12 D using unsigned two's complement arithmetic.

l2D =
-lSD =

Overflow .. 0

o 0 0 0 1 1 0 0 = OCH
1 1 1 1 0 0 0 1 = OFlH
1 1 1 1 1 1 0 1 = -3D

Since the overflow out of bit 7=0, indicating that the answer is negative and in
its two's complement form, the subtract operation will set the carry bit. (This
also indicates that a "borrow" occurred while subtracting multibyte numbers.
See Section S. 3) •

NOTE: The 8008 instructions which perform the subtraction operation are SUB,
SUI, SBB, SBI, CMP, and CM!. Although the same result will be obtained by
addition of a complemented number or subtraction of an un complemented
number, the resulting carry bit will be different.

Example: If the result -3 is produced by performing an "ADD" operation on the
numbers +12D and -lSD, the carry bit will be reset; if the same
result is produced by performing a "SUB" operation on the numbers
+12D and +15D, the carry bit will be set. Both operations indicate
that the result is negative; the programmer must be aware which
operations set or reset the carry bit.

"ADD" +12D and -15D

+12D =
+(-lSD) =

0]

o 0 001 100
1 1 1 1 000 1
1 1 1 1 1 1 0 1 = -3D

L.-causes carry to be reset

WIN TWO'S COMPLEMENT?

"SUB" +lSD from +12D

+12D = 0 0 0 0 1 1 0 0
- (+15 D) = 1 1 1 1 0 0 a 1

0] 1 1 1 1 1 1 0 1 = -3D
~auses carry to be set

Using two's complement notation for negative numbers, any subtraction problem
becomes a sequence of bit inversions and additions. Therefore, fewer circuits
need to be built to perform subtraction.

3-19

3.2.2 DB DEFINE BYTE (S) OF DATA

Format:

Label Operand

HERE: DB LIST

LIST is a Ust of either:
1) Arithmetic and logical expressions involving any of the arithmetic

and logical operators, which evaluate to eight-bit data quantities

2) Strings of ASCII characters enclosed in quotes

Description: The eight bit value of each expression, or the eight bit ASCII
representation of each character is stored in the next available byt(~ of memory
starting with the byte addressed by HERE:

Examples:

Instruction

HERE:
WORD I :
WORD 2
SIR:
MINUS:

DB
DB
DB
DB
DB

OA3H
5 * 2, 2 FH - OAH
5ABCH SHR 8
lSTRINGSp1 1

- 03H

Assembled Data (hex)

A3
OA25
5A
53545 2494E4 72 031
FD

Note: In the first example above, the hexadecimal value A3 must be written as
OA3 since hexadecimal numbers must start with a decimal digit. (See
Section 3. 1 .5) .

3-20

3.2.3 DW DEFINE WORD (TWO BYTES) OF DATA

Format:

Label Operand

HERE: DW LIST

LIST is a list of expressions which evaluate to 16 bit data quantities.

Description: The least significant 8 bits of the expression are stored in the
lower addres s memory byte (HERE:), and the most significant 8" bits are stored
in the next higher addressed byte (HERE:+l). This reverse order of the high and
low address bytes is normally the case when storing addresses in memory. This
statement is usually used to create address constants for the transfer-of-control
instructions: thus LIST is usually a list of one or more statement labels appearing
elsewhere in the program.

Examples:

Assume CaMP addresses memory location 3BICH and FILL addresses memory
location 3EB4.

Instruction

ADDl:
ADD2:
ADD3:

DW
DW
DW

CaMP
FILL
3COIH I 3CAEH

Assembled Data (hex)

IC3B
B43E
Ol3CAE3C

Note that in each case, the data are stored with the least significant 8 bits first.

3-21

3.2.4 DS QEFINE .§TORAGE (BYTES)

Format:

Label Code Operand

HERE: DS EXP

EXP is a single arithmetic or logica 1 expression.

Description: The value of EXP specifies the number of memory bytes to be
reserved for data storage. N:> data values are assembled into these bytes:
in particular the programmer should not assume that they will be zero, or any
other value. The next instruction will be assembled at memory location
HERE: + EXP (HERE: + 10 or HERE: + 16 in the example below).

Examples:

HERE: DS
DS

10
lOH

3-22

Reserve the next 10 bytes
Reserve the next 16 bytes

3.3 SINGLE REGISTER INSTRUCTIONS

This section describes the two instructions which involve a single register.
Instructions in this class occupy one byte as follows:

I a a R E ,G I 0

Loot
4 ___ ---JJO for IN R

1 for DCR

for register B
010 for register C
all for register D
100 for register E
101 for register H
110 for register L

Note: REG F 000 or 111

The general assembly language instruction format is:

Label Operand

LABEL: OP REG

t I....-______ ~B/C/D/E/H/L

I....-________ ---:INR or DCR

L...-_________________ Optional instruction label

3-23

3.3.1 INR INCREMENT REGISTER

Format:

Label Code Operand

Description: The register specified by REG is incremented by one. REG
cannot evaluate to 000 or 111, implying that neither the accumulator nor any
memory location can be incremented by this instruction.

Condition bits affected: Zero, sign, parity

Example: If register C contains 99H, the instruction:

INR C

will cause register C to contain 9AR.

3.3.2 DCR DECREMENT REGISTER

Format:

Label Code Operand

DCR Rr:G

Description: The register specified by REGis decremented by one. REG
cannot evaluate to 000 or Ill, implying that neither the accumulator nor
any memory location can be deqremented by this instruction.

3-24

Condition bits affected: Zero I sign I parity

Example: If register L contains zero, the instruction:

DCR L

will cause register L to contain OFFH
(minus one in two's complement form)

3.4 MOV INSTRUCTION

This section describes the MOV instruction, which transfers data between re­
gisters or between memory and registers. This instruction occupies one byte.

Format:

Label Code Operand

MOV , f -
(1 1 I D S Tis R C

t t 000 for register A
001 for register B
010 for register C
011 for register D
100 for register E
101 for register H
110 for rp.qister L
III for memory ref-

erence

Note: DDD and SSS cannot both = III B.

Description: One byte of data is moved from the register specified by SRC (the
source register) to the register specified by DST (the destination register).
The data replaces the contents of the destination register; the source re-

3-25

gister remains unchanged. If a memory reference is specified (SRC or DS'F
= IllB) I the data is fetched from or stored into the memory address con­
tained in the Hand L registers. Register L contains the low-order eight
bits of the address and register H contains the high-order six bits of the
address.

Condition bits affected: none

Example 1:

Label

MOV

MOV

Operand

A,r:

D, D

Comment

Move contents of the E register

to the A register

Move contents of the D register

to the D register Ii. e. I this is

a null operation

Note: Any of the null operation instructions MOV X, X can also be specified as N
(no-operation) .

Example 2:

The following set of instruction will store the contents of the accumulator
at memory location 2BE9H.

Label

START:

Code

MVI
MVI
MOV

Operand

H, 2BH
L, OE9H
M,A

3-26

Comment

H = high order address byte
L = low order address byte
Move accumulator to memory

Example 3:

The following set of instructions will store the D register at memory location
FINAL:, wherever that location happens to be in memory.

Label

START: MVI
MVI
MOV

Operand

H I FINAL SHR 8
L, FINAL AND OFFH
M,D

Comment

H = high order byte
L = low order byte
Move D to memory
addressed by Hand L

The first two instructions in the example above are so commonly used that
they may be specified by the single macro instruction:

START: LXI H,FINAL

as described in Section 4.2.1.

3-27

3.5 REGISTER OR MEMORY TO ACCUMULATOR INSTRUCTION S

This section describes the instructions which operate on the accumulator
u sing a byte fetched from another regi ster or memory. In struction s in this
class occupy one byte as follows:

I 1 I 0 I ~ P I R I E IG I

000 for ADD t 1 000 for register
001 for ADC 001 for register
010 for SUB 010 for register
011 for SBB 011 for register
100 for ANA 100 for register
101 for XRA 101 for register
110 for ORA 110 for register
111 for CMP 111 for memory

reference

When a memory reference is specified, the byte of data is fetched from the
memory location addressed by registers Hand L.

The general assembly language instruction format is:

3-28

A
B
C
D
l~

H
L

Label Operand

LABEL: REG

tL.. ___ A, B, C, 0, E, H, L, or M

ADC; SUB, SBB, ANA, XRA, ORA, or CMP

'--__________ O.ptionalinstruction label

3.5.1 ADD ADD REGISTER OR !v1EMORY TO ACCUMULATOR

Format:

Code Operand

REG
/'

Description: The byte in the register specified by REG, or the memory lo­
cation addressed by Hand L (if REG=111B) I is added to the contents of
the accumulator using two's complement arithmetic. The result is kept
in the accumulator; the byte in REG is unchanged.

If there is a carry out of the high-order bit position, the carry bit is set.

The zero bit is set if the result is zero.

The parity bit is set if the result contains an even number of ones (even
parity) .

The sign bit is set to the most significant bit of the result.

Condition bits affected: Carry, sign, zero, parity

3-29

Example 1:

Label Operand Assembled Data

ADl: MVI D, 2FR IE2F

AD2: MVI A, 6CR 066C

ADD D 83

The instructions at ADI: and AD2: load the D register with 2FR a.td the
accumulator with 6CR, respectively. The ADD instruction performs the
addition as follows:

2ER = 0 0 1 0 1 I 1 0
6CH = OIl 0 1 1 0 0

9AR = 1 0 0 1 1 0 1 0

The zero and carry bits are reset; the parity and sign bits are set. The
accumulator now contains 9AR.

Example 2:

The instruction:

ADD A

will double the accumulator.

3-30

,
3.5.2 ADC ADD REGISTER OR MEMORY TO ACCUMULATOR WITH CARRY

Fonnat:

Label Operand

I I 0 I 0" 0, I I R I E I G I
Description: The byte in the register specified by REG, or the memory lo­
cation, addressed by Hand L (if REG = 1118) plus the contents of the
carry bit is added to the contents of the accumulator. The result is kept
in the accumulator; the byte in REG is unchanged.

The carry bit is set if there is a carry out of the high-Qrder bit position.

The zero bit is set if the result is zero.

The parity bit is set if the result ha s even parity.

The sign bit is set to the most significant bit of the result.

Condition bits affected: Carry, Sign, zero, parity

Example:

Label Code Operand Assomled

ADI: MVI C,3DH 163D
AD2: MVI A, 42H 0642

ADC C 8A

Assume that the carry bit = o. The instructions at ADl: and AD2: load the
C register and the accumulator with 3D and 42 respectively I but do not affect

3-31

the condition bits. The ADC instmction performs the addition as follows:

3DH = 0 0 1 1 1 1 0 1
42 H = 0 1 0 0 0 0 1 0

CARRY = 0

RESULT = 0 1 1 1 1 1 II=- 7FH

The results can be summarized as follows:

Accumulator = 7FH
Carry = 0
Sign = 0
Zero :::' 0
Parity ::: 0

If the carry bit had been one at the beginning of the example I the following
would have occurred:

3DH = 00111 101
42H = o 1 000 0 1 0

CARRY = 1

RESULT = lOOOOO{)O = 80H

Accumulator = 80H
Carry = 0
Sign = 1
Zero = 0
Parity = 0

3.5.3 SUB SUBTRACT REGISTER OR MEMORY FROM ACCUMULATOR

Format:

Label Code OEerand
SUB / " -(1 01 0 • 1 .°1 R1E.G I

3-32

Description: The byte in the register specified by REG I or the memory: location
addressed by Hand L (if REG=I11B), is subtracted from the accumulator using
two's complement arithmetic. The result is kept in the accumulator; the byte
in REG is unchanged.

If there is no overflow out of the high-order bit position, indicating that a borrow
occurred, the carry bit is set. (Note that this differs from an add operation, which
sets the carry if an overflow occurs.)

The zero bit is set if the result is zero.

The parity bit is set if the result has even parity.

The sign bit is set to the most significant bit of the result.

Condition bits affected: Carry I sign, zero I parity

Example:

Assume that the accumulator contains 3EH. Then the instruction:

SUB A

will subtract the accumulator from itself producing a result of zero as follows:

3 EH = a a 1 1 I 1 1 a
+ (-3EH) = 1 1 a a 0 a a 1 Negate and add one
+ _____ ---:=--_____ --=-1 To produce two's complement

Overflow ... 1] 0 0 0 0 0 0 0 0 Result = 0

Since there was an overflow out of the high-order bit position I and this is a
subtraction operation, the carry bit will be reset.

The parity and zero bits will also be set, and the sign bit will be reset.

Thus the SUB A instruction can be used to reset the carry bit (and zero the
accumulator) .

3-33

3.5.4 SBB SUBTRACT REGISTER OR MEMORY FROM ACCUMULATOR
WITH BORROW

Format:

Label ~ Operand

S~ i G
..

Description: The carry bit is internally added to the contents of the register
specified by REG, or the memory location addressed by HAnd L (if REG=lllB).
This value is then subtracted from the accumulator using two'S complement
arithmetic. The result is stored in the accumulator; the byte in REG remains
unchanged.

This instruction is most useful when performing multfbyte subtractions. It
adjusts the result of subtracting two bytes when a previous subtraction has
produced a negative result (a borrow). For an example of this I see Section
5.3.

Condition bits affected: Carry I sign, zmo I parity (See Section 3.5.3 for details)

Example:

Label
SB1
SB2

Code
MVI
MVI
SBB

Operand
L, 2 H
A, 4H
L

Assembled Data
3602
0604

Assume that the carry bit = 1. Then the SBB instruction will act as follows:

02H + Carry = 03H
Two's Complement of 03H = 11111101

Adding this to the accumulator produces:

Accumulator == 04H = 000 0 0 10 0
11111101

l~ 0 0 o.n () 0 0 1

~verflOW = 1

3-34

= .() 1 H .~ R~:;u It

causing carry to be reset.

The final result stored in the accumulator is one, causing the zero bit to be
reset. The carry bit is reset since this is a subtract operation and there was
an overflow out of the high-order bit position. The parity and the sign bits are
reset.

3-35

3.5.5 ANA LOGICAL" AND" REGISTER OR MEMORY WITH ACCUMULATOR

Format:

Label Code Operand

ANA REG

j / ,

1 0 I 1 0
10 I R I E,G I

Description: The byte in the register specified by REG, or the memory lo­
cation addressed by Hand L (if REG = lllB), is logically ANDed bit by
bit with the contents of the accumulator.

The result is stored in the accumulator; the byte in REG remains unchanged.
The carry bit is set to zero, while the zero, sign and parity bits are set
according to the result.

The logical AND function is given by the following truth table:

o I

o o o

1 o 1

Logical AND

Condition bits affected: Carry, zero, sign, parity

Example:

Since any bit ANDed with a zero produces a zero and any bit ANDed with a one
remains unchanged, the AND function is often used to zero groups of bits.

3-36

Label
ANI
AN2 :

Code
MVI
MVI
ANA

Operand
A, OrCH
C/OrH
C

The ANA instruction acts as follows:

Accumulator =
C Register =

Result in Accumulator =

1 1 1 1 1 1 0 0 = OrCH
o 0 0 0 1 1 1 1 = OrH

o 0 0 0 1 1 0 0 = OCH

Assembled Data
06rC
160r
A2

This particular example guarantees that the high-order four bits of the
accumulator are zero I and the low-order four bits are unchanged.

3.5.6

Fonnat:

XRA EXCLUSIVE - OR REGISTER OR MEMORY WITH ACCUMULATOR
(ZERO ACCUMULATOR)

Label Code Operand
XRA REG

j /
I 1 o I 1 0 1 IR E G I , I

Description: The byte in the register specified by REG I or the memory location
addressed by Hand L (if REG =- I11B) I is exclusive - ORed bit by bit with
the contents of the accumulator. The result is stored in the accumulator; the
byte in REG remains unchanged. The carry bit is set to zero, sign and parity
bits are set according to the result.

3-37

The Exclusive - OR function is given by the following truth table:

o 1

o o 1

1 1 o

Condition bits affected: Carry, zero, sign, parity

Example 1:

Since any bit exclusive - ORed with itself produces zero I the exclusive - OR
can be used to quickly zero the accumulator. (The instruction SUB A could
also be used.)

Label Code
XRA
MOV
MOV

Operand
A
B,A
C,A

These instructions quickly zero the A, B, and C register.

Example 2:

The exclusive - OR can be used to test two data bytes for equality.

Label Code

XRA

Operand

C

If the contents of the C register and the accumulator are equal, the result will

3-38

be zero and the zero bit will be set. If the two quantities differ in any bit
position a one bit will be produced in the result, and the zero bit will not
be set.

Example 3:

Label Code

MVI
XRA

Operand

A, OFFH
C

Any bit Exclusive - ORed with a one is complemented (0 XORI = I, 1 XORI
= 0). The XRA instruction above will therefore store the one's complement
of the C register into the accumulator.

Example 4j

Testing for change of status.

Many times a byte is used to hold the status of several (up to eight) con­
ditions within a program; each bit signifying whether a condition is true
or false, enabled or disabled, etc.

The exclusive - OR function provides a quick means of determing whioh bits
of a word have changed from one time to another.

Label

LA:

LB:
CHNG:
STAT:

STAT2:
STATI:

Code
MVI
MVI
MOV
INR
MOV
XRA
ANA

DS
DS

Operand
H, STAT@ SHR 8
L, STAT@ AND OFFH
A,M
L
B,M
B
B

1

Load address of status
into Hand L registers
STAT2 to accumulator
Address next location
STATl to B register
Exclusive-OR STAT! and STAT2
AND result with STATl

I

'---------..;.-.--..;.-.--------------------------:~.-.....

.)-39

Assume that logic elsewhere in the program has read the status of eight
conditions and stored the corresponding string of eight zeros and ones at
STAT 1 and at some later time has read the same conditions and stored
the new status at STAT2. The Exclusive - OR at CHNG: produces a one
bit in the accumulator wherever a condition has changed between STAT!
and STAT2.

For example:

Bit Number
STATl = 5CB =
STAT2 = 78B =

Exclusive-OR :::;

76543210
01011100
01111000

00100 1 0 0

This shows that the conditions associated with bits 2 and 5 have changed
between STATI and STAT2. Knowing this I the program can tell whether
these bits were set or reset by ANDing the result with STAT1 .

Result =
STAT I =

00100 1 0 0
o 1 0 1 1 1 0 0

AND = 0 0 0 0 0 1 0 0

Since bit 2 is now one, it was set between STATl and STAT2 ; since bit 5
1s zero it was reset.

3.5.7 ORA LOGICAL "OR" REGISTER OR MEMORY WITH ACCUMULATOR

Fonnat:

Label Code °Eerand
ORA REG

" I

I 1 °1 1
•

1 .°1 R E G I , I I

Description: The byte in the register specified by REG, or the memory lo­
cation addres sed by Hand L (if REG = I11B), is logically ORed bit by bit
with the contents of the accumulator.

3-40

The result is stored in the accumulator; the byte in REG remains unchanged.
The carry bit is set to zero, while the zero, sign, and IBrity bits are set
according to the result.

The logical OR function is given by the following truth table:
o 1

o o 1

1 1 1

Condition bits affected: Carry, zero, sign, parity

Example:

Since any bit ORed with a one produces a one, and any bit ORed with a zero
remains unchanged, the OR function is often used to set groups of b1ts to
one.

Label
OR I :
OR 2 :

Code
MVI
MVI
ORA

Operand
A, 33H
C,OFH
C

The ORA instruction acts as follows:

Accumulator
C register

Result= Accumulator

= 00110011
= 00001111
= 00111111

Assembled Data
0633

= 33H
= OFR
= 3FH

160r
B2

This particular exampl'e quarantees that the low-order four bits of the
accumulator are one I and the high-order four bits are unchanged.

3.5.8

Format:

CMP COMPARE REGISTER OR MEMORY WITH ACCUMULATOR

Label Code Operand
. REG ----~P

11 011 1 11 REG 1 _ \ _, I _ I J _

3-41

Description: The byte in the register specified by REG, or the memory location
addressed by Hand L (if REG =0 111B), is compared to the contents of the
accumulator. The comparison is performed by internally subtracting the con­
tents of REG from the accumulator (leaving both unchanged) and setting the
condition bits according to the result. In particular, the zero bit is set if
the quantities are equal, andreset if they are unequal. Since a subtract operation
is perfonned, the carry bit will be set if there is no overflow out of bit 7, in­
dicating that the contents of REG are greater than the contents of the accumulator,
and reset otherwise.
Note: If the two quantities to be compared differ in sign, the sense of the
carry bit is reversed.

Condition bits affected: Carry, zero, sign, parity

Example 1:

MVI
CMP

Operand

E S
E

Assembled Data

2605
BC

Assume that the accumulator contaips the number OAH. The compare instruc­
tion performs the following internal subtractions:

+
Accumulator =
(- E register) =

.DAH = a 0 a a 1 a 1 a
-SH = 1 1 1 1 1 0 1 1

1 a 0 0 0 a 1 0 1 = result
L.-overflow =1, causing carry to be reset

The accumulator still contains OAR and the E register still contains aSH;
however the carry bit is reset and the zero bit reset, indicating r. less than A.

Example 2:

If the accumulator had contained the number 2H, the internal subtraction would
have produced the following:

3-42

+
Accumulator =
(- E register) =

02H = 0 0 0 0 0 0 1 0
-SH = 1 1 I 1 1 0 1 1

I 1 1 1 1 1 0 1 = result
1 overflow=O causing carry to be set

The zero bit would be reset and the carry bit set, indicating E greater than A.

Example 3:

Assume that the accumulator contains -ISH. The internal subtraction now
produces the following:

+
Accumulator =
(- E register) =

-ISH = 1 1 1 0 0 1 0 1
-5H = 1 1 1 1 1 0 1 1

11100000
1 overflow: 1 causing carry to be reset

Since the two numbers to be compared differed in sign, the resetting of the
carry bit now indicates E greater than A.

3. 6 ROTATE ACCUMULATOR INSTRUCTIONS

This section describes the instructions which rotate the contents of the
accumulator. No memory locations or other registers are referenced.

Instructions in this class occupy one byte as follows:

(0 , 0 o 1 o I P I 0 1 01
---""!I

t 00 for RtC
01 foc RRC
10 for RAt
11 foc RAR

The general assembly language instruction format 1s:

3-43

Label Code Operand

LABEL: OP

t
L..-.. _____ RLC I RRC I RAL I or RAR

LAlways Blank

'-------------------Optional instruction label

3.6.1 RLC ROTATE ACCUMULATOR LEFT

Fonnat:

Label Code Operand

RLC

\
~

I 0 0 ,01°1°1 0 1 0 I I I

Description: The carry bit is set equal to the high order bit of the accumulator.
The contents of the accumulator are rotated one bit position to the left I with
the high-order bit being transferred to the low-order bit position of the
accumulator.

Condition bits affected: Carry

Example:

Label Code
MVI
RLC

Operand
A, OF2 H

3-44

Assembled Data
061'2
02

Before RLC is ex~cuted: Carry Accumulator

0---.. --r-l l l d 11110101110 IJ
After RLC is executed: [!] I 11 d dol old 011 J

3.6.2

Format:

Carry = 1 . A = OESH

RRC ROTATE ACCUMULATOR RIGHT

Label Operand

RRC

\ ------
o 0 0 I 0 1 I 0 1 0

I I _ I _ .1 I

Description: The carry bit is set equal to the low-order bit of the accumulator.
The contents of the accumulator are rotated one bIt position to the right I with.
the low-order bit being transferred to the high-order bit position of the
accumulator.

Condition bits affected: Carry

Example:

Code

MVI
RRC

3-45

Operand

A, OP2H

Assembled Data

06F2
OA

Before RRC is executed: Accumulator Carry

[1111 11 11 10 10 III 0 I--r-------- 0
After RRC is executed:

[0111111111010111 G
A = 79H Carry = 0

3.6.3 RAL ROTATE ACCUMULATOR LEIT THROUGH CARRY

Format:

Label Operand

100 0 I 1 0 I 0 1 0
_ ". '. It

Description: The contents of the accumulator are rotated one bit position to
the left.

The high-order bit of the accumulator replaces the carry bit, while the carry
bit replaces the low-order bit of the accumulator.

Condition bits affected: Carry

Example:

Label

MVI
RAL

Operand

A, OBSH

3-46

As sembled Data

06BS
12

Before RAL is executed: Carry Accumulator

After RAL is executed: El (0 1 1 0 1 0 1 0 1
Carry == I A= 6AH

3.6.4 RAR ROTATE ACCUMULATOR RIGHT THROUGH CARRY

Format:

Label Operand

RAR

\---.-...

1000 11 11 0 I 0 I _ 11_'_ 11_

Description: The contents of the accumulator are rotated one bit position to
the right.

The low-order bit of the accumulator replaces the carry bit, while the carry
bit replaces the high-order bit of the accumulator.

Condition bits affected: Carry

Example:

MVI
RAR

3-47

Operand

A, 6AH

As sembled Data

066A
IA

Accumulator

After RAR is executed:

A=OB5H Carry = 0

3-48

3.7 IMMEDIATE INSTRUCTIONS

This section describes instructions which perform operations using a byte
of data which is part of the instruction itself.

Instructions in this class occupy two bytes as follows:

I
(a) For the MVI instruction:

° ° I R E Gil I , ° I D
I I I L I .

~ 000
001
000
°] I
10O
I 0 I
I 1 0
III

A
I I

for
for
for
for
for
for
for
for

T

register A
register B
register C
register D
register E
register H
register L
memory reference

(b) For the remaining instructions:

°lolo,pliloro Iv A T A , I I , ,
--.--

f 000 for ADI
001 for ACI
010 for SUI

° I I for SBI
100 for ANI
101 for XRI
I 1 0 for ORI
I 1 1 for CPI

When a memory reference is specified in the MVI instruction, the addressed
location is specified by too Hand L registers. The L register holds the low-order

3-49

8 bits of the address; the H register holds the high-order 6 bits of the
address.

The general assembly language instruction format is:

Label

LABEL: ---- MVI

Operand

REG, DATA
--....-- --L • 8 - bit data quantity

A, B, C, D, E, H, L, or M

------------Optional instruction label

Label

LABEL: ---- OP

- or-

Operand

DATA

,1:...,..... --- 8 - bit data quantity

ACI, SUI, SBI, ANI, XRI, ORI, or CPI

~------ Optional instruction label

3.7.1 MVI MOVE IMMEDIATE DATA

Format:

Label Operand

MVI REG, DATA ------- -----..

Description: The byte of immediate data is stored in the register specified
by REG, or in the memory location addressed by registers H andL (if REG =
IllB) •

Condition bits affected: None

Example:

Label

Ml:
M2:
M3:

MVI
MVI
MVI

Operand

H,3CH
L, OF4H
M, OFFH

Assembled Data

2E3C
36F4
3EFF

The instruction at MI: loads the H register with the byte of data at MI: + I,
1. e., 3CH.

Likewise, the instruction at M2: loads the L register with OF4H. The in­
struction at M3: causes the data at M3: + I (OFFH) to be stored at memory
location 3CF4H. The memory location is obtained by concatenating the
contents of the Hand L registers into a 14 bit address.

3.7.2 AD! ADD IMMEDIATE TO ACCUMULATOR

Format:

Label Code Operand

ADI DATA

1 ~ ...
[0 o I 0 10 1 0 I I 0

I 0 I D A T A I I I I I I I I I

Description: The byte of immediate data is added to the contents of the
accumulator using two's complement arithmetic. The result is kept in the
accumulator.

3-51

If there is an overflow out of the high-order bit position, the carry bit is set.

The zero bit is set if the result is zero.

The parity bit is set if the result contains an even number of ones (even
parity) .

The sign bit is set to the most significant bit of the result.

Condition bits affected: Carry I sign, zero, parity

Example:

Label

AD1:
AD2:
AD3:

MVI
ADI
ADI

Operand

A, 20
66
-66

Assembled Data

0614
0442
04BE

The instruction at AD1: loads the accumulator with 14H. The instruction at
AD2: performs the following addition:

Accumulator =
AD2 Immediate Data =

14H = 00010100
42H = 01000010
Result = 01010110 = 56H = New accumulator

The parity bit is set. Other status bits are reset.

The instruction at AD3: restores the original contents of the accumulator by
performing the following addition:

Accumulator = 56H
AD3 Immediate Data = OBEH

Result

= 01010110
= 10111110
= 00010100 = 14H

The carry and parity bits are set. The zero and sign bits are reset.

3-52

3.7.3 ACI ADD IMMEDIATE TO ACCUMULATOR WITH CARRY

Format:

Label Code OEerand
ACI DATA

/ /
I 0 o I 0 I o I I I 1 0 0 I D A T A I , I I I I I I I I

Description: The byte of immediate data is added to the contents of the
accumulator plus the contents of the carry bit. The result is kept in the
accumulator.

The carry bit is set if there is an overflow out of the high-order bit position.

The zero bit is set if the result is zero.

The parity bit is set if the result has even parity.

The sign bit is set to the most significant bit of the result.

Condition bits affected: Carry, sign, zero, parity

ExamEle:

Assembled
Label Code °Eerand Data
CI: MVI A, 56B 0656

C2: ACI -66 OCBE

C3: ACI 66 OC42

Assuming that the carry bit = 0 just before the instruction at C2: is executed I
this instruction will produce the same result as instruction AD3: in the ex­
ample of Section 3.7.2.

That is: Accumu lator
Carry

= 14H
= 1

The instruction at C3: then perrorms the following addition:

C3

3.7.4

Format:

Accumulator
Immediate Data
Carry bit

= 14H = 0 0 0 1 0 1 0 0
= 42H =; 0 1 0 0 0 0 1 0
= I = 1

Result = 0 1 0 1 0 1 II=- 57H

SUI SUBTRACT IMM EDIATE FROM ACCUMULATOR

Label Code OEerand
SUI DATA

I j

I o 010. I
I 0 1 1 0

I 0 I D A T A
I I I I I I I I I I I

Description: The byte of immediate data is subtracted from tne contents
of the accumulator using two's complement arithmetic. The result is stored
in the accumulator.

Since this Is a subtraction operation, the carry bit is set if there is no overrlow
out of the hlg' -order bit position, and roset if there is an overflow.

The zero bit is set if the result is zero.

The parity bit is set if the result has even parity.

The sign bit is set to the most significant bit of the result.

Condition bits affected: Carry, sign, zero, parity

3"54

Example:

This instruction can be used as the equivalent of the DCR instruction applied
to the accumulator. This is handy I since the instruction DCR A is illegal.

Label

Sl:

Code
MVI
SUI

Operand
A, 0
1

Assembled Data
0600
1401

The MVI instruction loads the accumulator with zero. The SUI instruction per­
forms the following subtraction:

Accumulator = OH _. 0 0 0 0 0 0 0 0
-S1 Immediate data = -IH = 1 1 1 1 1 1 1 1

Result = 1 1 1 1 1 1 1 1 -IH

two's complement

Since there was no overflow, and this is a subtract operation, the carry bit is set.

The zero bit is also reset I while the sign and parity bJts are set.

3.7.5 SBI SUBTRACT IMMEDIATE FROM ACCUMULATOR WITH BORROW

Format:

Label Code Operand
SBI DATA

\ ~
~

I o I 0 I 0 1 1 I 1 0 0 I D A T A , , L I I 1

Description: The carry bit is internally added to the byte of immediate data.
This value is then subtracted from the accumulator using two's complement
arithmetic. The result is stored in the accumulator; the byte of immedIate data
Is unchanged.

This instruction and the SBB instruction are most useful when performing multibyte
subtract1ons. For_an example of this, see Section 5.3.

Since this is a subtraction operation, the carry bit is set if there is no over­
flow out of the high-order position, and reset if there is an overflow.

The zero bit is set if the result is zero.

The parity bit is set if the result has even parity.

The sign bit is set to the most significant bit of the result.

Condition bits affected: Carry, sign, zero, parity

Example:

Code
XRA
SBI

Operand
A
1

Assembled Data
AS
ICOI

The XRA instruction will zero the accumulator (see example in Section
3.5.6). If the carry bit is zero I the SBI instruction will produce exactly
the same results as the example of Section 3.7.4.

If the carry bit is one I the SBI instruction will perform the following op­
eration:

Immediate Data + Carry = 02 H
Two's Complement of 02H == 1111111 0

Adding this to the accumulator produces:

Accumulator = OR= 0 0 0 0 0 0 0 0
111 111 1 0
1 1 1 1 1 1 1 0 = -2H = ReSUlt

1 overflow = 0 causing carry to be set

This time the carry and sign bits are set, while the zero and parity bits are reset.·

3-56

3.7.6 ANI AND IMMEDIATE WITH ACCUMULATOR

Format:

Label Code °eerand
ANI DATA

I \ ,
~

I 0 01 1 0 I 0 I 1 0
I 0 I D A T A I I I I I I I I

Description: The byte of immediate data is logically ANDed with the contents
of the accumulator.

The resu It is stored in the accumula tor. The ca rry bit is set to zero I whit e the
zero I sign I and parity bits are set according to the result.

Condition bits affected: Carry I zero I sign I parity

Examele:

Label

AI:

Code
MOV
ANI

Q,pernnd
A/C
OrH

Assembled Data
C2
240r

The contents of the C register are moved to the accumulator. The ANI in­
struction then zeroes the high-order four bits I leaving the low-order four
bits unchanged. The zero bit will be set if and only if the low-order four
bits were originally zero.

If the C register contained 3AB, the ANI would perform the following:

3-57

Accumulator = 3AH
AND (AI Immediate = OFH

= 0 0 1 1 1 0 1 0
= 0 000 1 1 1 1

data}

Result = 0 0 0 0 1 0 1 0 = OAH

3.7.7 XRI EXCLUSIVE - OR IMMEDIATE WITH ACCUMULATOR

Format:

Label Code Operand
XRI DA~
\ -

I 0
10

1
1 0 III 0 olD A T A

I I I I & I , l
Description: The byte of immediate data is exclusive - ORed with the con­
tents of the accumulator. The result is stored in the accumulator. The
carry bit is set to zero, .while the zero, sign and parity bits are set
according to the result.

Condition bits affected: Carry, zero, sign, parity

Example:

The following instructions cause the two's complement of the C register to
be produced in the accumulator. (See Section 3.5.6).

Label Code Operand Comment

MOV A,e C register to accumulator
XRI OFFH Produce one's complement
AD! 1 +1 = two's complement

3-58

3.7.8 ORI OR IMMEDIATE WITH ACCUMULATOR

Fonnat:

Label Code
ORI

Operand
DATA

/ ~
1 0 0ll 10 110 olD
_ 1_ I l. I I.'

A
I

...

Description: The byte of immediate data is logically ORed with the contents
of the accumulator.

The result is stored in the accumulator. The carry bit is set to zero, while the
zero, sign, and parity bits are set according to the result.

Condition bits affected: Carry, zero, sign, parity

Example:

Label

OR1:

Code
MOV
ORI

Operand.
A,C
OFH

Assembled Data
C2
340F

The contents of the C register are moved to the accumulator. The OR! in­
struction then sets the low-order four bits to on'e, leaving the high-order
four bits unchanged. . .

If the C register contained OBSH, the ORI would perfonn the following:

Accumulator = OBSH -- 10110101
OR(ORI Immp.dlate = orH = o 0 001 III

data)
Result -. 1 0 1 1 1 111 :- OBr:H

3--59

3.7.9 CPI COMPARE IMMEDIATE WITH ACCUMULATOR

Format:

Label Code OEerand
DATA CP\
~ ...

0 o I 1 1 1 I 1 I 0 I 0 I D A T A I I I I I I I I I

Description: The byte of immediate data is compared to the contents of the
accumulator.

The comparison is perfonned by internally subtracting the data from the
accumulator using two's complement arithmetic, leaving the accumulator
unchanged but setting the condition bits by the result.

In particular, the zero bit is set if the quantities are equal I and reset if
they are unequal.

Since a subtract operation is perfonned, the carry bit will be set if there is
no overflow out of bit 7, indicating that the immediate data is greater than the
contents of the accumulator, and reset otherwise.

Note: If the two quantities to be compared differ in sign I the sense of the
carry bit is reversed.

Condition bits affected: Carry I zero, sign I parity

Example:

Label Code
MVI
cpr

OEerand
A, 4AH
40H

The cpr instruction performs the following operation:

3-60

Assembled Data
064A
3C40

Accumulator == 4AH = 0 1 0 0 1 '0 1 '0
+ (-Immediate data) =-40H= 11 000000

1 0 0 0 0 1 0 1 (j Result
Overflow = 1 causing carry to be reset

The accumulator st111 contains 4AH, but the zero bit is reset indicating that
the quantities were unequal, and the carry bit is reset indicating
DATA < Accumulator.

3.8 JUMP INSTRUCTIONS

This section describes instructions which alter the normal execution sequence
of instructions.

Instructions in this class occupy three bytes as follows:

I 0 I 11 X X Xxi 0 01 LOW ADD 'I X X I H I ADD I
- - - I I I _ , .' , , ! I". I ."" I _

000 1 for
o 0 0 0 for
o 0 1 0 for
o 1 0 0 for
o 1 1 0 for
1 0 0 0 for
1 0 1 0 for

,1 1 0 0 for
1 1 1 0 for

t Lhi9h order 6 bits of
a memory address

"don't care" bits (0 or 1)

low -order 8 bits of a memory address

IMP
JNC
JNZ
JP
JPO
Je
JZ
1M
JPE

Note that, just as i.lddresses are normally stored in memory with the low order
byte first, so are the addresses reprosented in the Jump Instructions.

3-61

The general assembly language instruction format is:

Label
LABEL:

Code
OP

Operand
EXP

tL ______ a 14 - bit address

'-------IMP, JC, JNC, JZ, JNZ, 1M, JP, JPE, JPO

1--------------vptional instruction label

3.8.1 JMP JUMP

Format:

Label Code
IMP

/
(~ 1 100 0
- I _ I I I

Operand
ADR

;--------~
.....,.. pL

alLOW ADD I
I I I I I' ,

Description: Program execution continues at the memory address ADR, formed
by concatenating the 6 bits of HI ADD with the 8 bits of LOW ADD.

Condition bits affected: None

Example:

Arbitrary Memory Assembled
Address Label Code Operand Data

3COO JMP CLR 44003E
3C03 AD: ADI 2 0402

3DOO LOAD: MVI A, 3 0603
3D02 1MP 3C03H 44033C

3EOO CLR: XRA A A8
3EOI IMP ~-101H 44003D

3-62

Normally, program instructions are executed sequentially. Al4 bit register
called the program counter holds the address of the next instruction to be
executed. When an instruction is fetched from memory (but before it is
executed), the program counter is incremented by the length of the instruction.
Thus, if a two byte instruction at address 3COOH is fetched, the next in­
struction will be fetched from address 3C02H. The IMP instructfon replaces
the program counter contents with a new address, causing program execution
to continue at that address.

Thus the execution sequence of this example is as follows:

The IMP instruction at 3COO replaces the contents of the program counter
with 3EOO. The next instruction executed is the XRA at CLR: , clearing the
accumulator. The IMP at 3EOI is then executed.

The" $" is a special character which the assembler interprets as the address
of the instruction being assembled.

The program counter is set to 3DOO, and the MVI at this address loads the
accumulator with 3. The IMP at 3D02 sets the program counter to 3C03,
causing the ADI instruction to be executed.

From here, normal program execution continues with the instruction 3COS.

3-6:~

3.8.2 IC JUMP IF CARRY

Format:

Label Code
IC

/ -
0 I I 1 0 0 I 0 I 0 o I LOW ADD X X H I ADD

I I I , , , I , , , , , , ,

Description: If the carry bit is one, program execution continues at the memory
address ADR. If the carry bit is zero, execution continues with the next
sequential instruction.

Condition bits affected: None

For a programming example, see Section 3.8.9.

3-64

3.8.3 INC JUMP IF NO CARRY

Format:

Label Code °eerand
JNC ADR

/ r------____
~ ~ ...

I 0 I I 0 0 001 0 0 I LOW ADD I X X I H I A D
t I I , I I I , , , I , , I I

Description: If the carry bit is zero, program execution continues at the
memory address ADR. If the carry bit is one, execution continues with the
next sequentia I instruction.

Condition bits affected: None

For a programming example, see Section 3.8.9.

3.8.4

Format:

JZ JUMP IF ZERO

Label Code
JZ

./
°eerand

ADR

/ -------------A ~

011101 °IOloILOWADDI~xIHIADDl
'.' I I ... II'll". 1 .""1_

D

Description: If the zero bit is one, program execution continues at the memory
address ADR. If the zero bit is zero, execution continues with the next
sequential instruction.

Condition bits affected: None

For a programming example, see Section 3.8.9.

3-65

3.8.5 JNZ JUMP IF NOT ZERO

Format:

Label Code
JNZ

//
...

I ° 1 I ° ° 1 ° I ° ° I r'i'¥.1I?1f1 X X I H I ADD I I I I I I , " , . ,
Description: If the zero bit is zero, program execution continues at the memory
address ADR. If the zero bit is one, execution continues with the next
sequential instruction.

Condition bits affected: None

For a programming example, see Section 3.8.9.

3.8.6

Format:

JM JUMP IF MINUS

Label Code
JM

/ ...

Operand

~-
IO.lll.ltO.oIOlorLOW ADDI X XJHI ADDI
~. ~. _ .. - "II'" ""'1

Description: If the sign bit is one (indicating a minus result), program exe­
cution continues at the memory address ADR. If the sign bit is zero, execution
continues with the next sequential instruction.

Condition bit affected: None

3-66

For a programming example I see Section 3.8.9.

3.8.7

Format:

JP JUMP IF POSITIVE

Label Code
JP

/ --

Operand
ADR

-~
o 11~IIIOIOIOIOILOW ADDI X XJHI ADD I '1""'. '."111

Description: If the sign bit is zero (indicating a positive result), program
execution continues at the memory address ADR. If the sign bit is one I
execution continues with the next sequential instruction.

Condition bits affected: None

For a programming example I see Section 3.8.9.

3.8.8

Format:

JPE JUMP IF PARITY EVEN

Labe! Code
JPE

Operand
ADR

/ --;------/1 --_________
- ...

(0 I I 11 I 'i'II , 0 I 0 I 0 It? 'i ~ ~ ? ? I XXIHI ADD 1
I I I I I ,

Description: If the parity bit is one (indicating a result with even parity) ,
program execution continues at the memory address ADR. If the parity bit is
zero, execution continues with the next sequential instruction.

3-67

Condition bits affected: None

3.8.9

Fonnat: .

JPO JUMP IF PARITY ODD

Label Code
JPO

/ ...

Operand
ADR r---------_
~ ~

r 0 1 I 0 1 1 0 I 0 0 I LOW A D DI ~ xl ~ i AD D 1
_ I _ I I I . I _ I I III I 1_ I _ I! I I I _

Description: If the parity bit is zero (indicating a result with odd parity) ,
program execution continues at the memory address ADR. If the parity bit
is one, execution continues with the next sequential instruction.

Condition bits affected: None

Examples of jump instruction:

Example:

This example shows three different but equivalent methods for jumping to one
of two points in a program based upon whether or not the sign bit of a number
is set. Assume that the byte to be tested is in the C register.

3-6U

Assembled
Label Code Operand Data

ONE: MOV A,C C2
ANI 80H 2480
JZ PLUS 68XXXX
JNZ MINUS 48XXXX

TWO: MOV A,C C2
RLC 02
INC PLUS 40XXXX
JMP MINUS 44XXXX

THREE: MOV A,C C2
ADI 0 0400
JM MINUS 70XXXX

PLUS: SIGN BIT RESET

MINUS: SIGN BIT SET

The AND - Immediate instruction in block ONE: zeroes all bits of the data
byte except the sign bit, which remains unchanged. If the sign bit was zero,
the zero condition bit will be set, and the J2 instruction will cause program
control to be transferred to the instruction at PLUS:. Otherwise, the J2
instruction will merely update the program counter by three, and the JN2
instruction will be executed, causing control to be transferred to the instruc­
tion at MINUS:. (The zero bit is unaffected by any jump instructions) .

The RLC instruction in block TWO: causes the carry bit to be set equal to
the sign bit of the data byte. If the sign bit wa s reset, the INC instruction
causes a jump to PLUS:. Otherwise the IMP instruction is executed, un­
conditionally transferring control to MINUS: . (Note that, in this instance,
a Ie instruction could be substitutec! for the unconditional jump with identical
results) .

The add-immediate instruction in block THREE: causes the condition bits to
be set. If the sign bit was set, t!1e JM instruction causes program control to
be transferred to MINUS:. Otherwise, program control flows automatically
into the PLUS: routine.

3-69

3.9 CALL SUBROUTINE INSTRUCTIONS

This section describes the instructions which call subroutines. These in­
structions operate like the jump instructions I causing a transfer of program
control. In addition I a return address is saved on the address stack (see,
Section 2.4) for use by the RETURN instructions (Section 3.10). A dis­
cussion ·of the techniques and reasons for writing and using subroutines
appears in Section 5. 3

Instructions in this class occupy three bytes as follows:

I 0 1 I X X X xiI I 0 I LOW ADD I X xl H I ADD]
. I . I I I ... ' , .11' '. I. I 1'1 ,_

o 0 0 1 for
o 0 0 0 for
o 0 1 0 for
o 10 0 for
o 1 1 0 for
1 000 for
1 0 1 0 for
1 1 0 0 for
1 1 1 0 for

---... \

L thigh-Order 6 bits of a
memory address

"don't care" bits (0 or 1)

1---- Low-order 8 bits of a memory addres s

CALL
CNC
CNZ
CP
CPO
CC
CZ
CM
CPE

Note that, just as addresses are normally stored in memory with the low
order byte first, so are the addresses represented the call instructions.

3-70

Thegenel"alassembly languageinslructl-on fonnat is:

Label
=tAllE!.: -

Operand
:t:XP

La 14 - bit memory addres,;

Io....--CALL" ee, CNC-. cz" CNZ. CM,GP~ CPE, -CPO

l------------:Optlon81 instruction label

.:Format:

-LaDel ~
CALL

.~

:Operand
SUB

.., ... ;"-;

I. (}1 .. ~ 4) .:0. '{)l i 1 . ())LOWA D0l: X xl: H I AD D.1. _) 1 I I· 1 .J J ~ 1 ., -J. 1 I 1 _ .) .~ II ,., 1 _

Des.crtpUo~ The contents of the program counter, which equals the addres s
of the instnrcUon immediately folloWlnq the CALL lnstl'uet!on·~ Is placed on
theaadrcess stal::k for1ater use.:by a Retumlnstnactlon . Program ex~cut1on
cortUnuescat tnememory ca:ddressSl1B.. obtained hY-'OO1l:eat en ating the 6 bits
.oflUADDwttb~e~:btts of LDWcADD.

Coodltioncbitsaft'ectea-:Nbne

3.9.2 CC CALL IF CARRY

Format:

Label Code Operand
______ CC ~ SUB

~ ~~~

Description: If the carry bit is one I a CALL is performed to subroutine SUB.
The program counter is saved on the address stack I and execution continues
with the first instruction of SUB.

If the carry bit is zero I program execution continues with the next sequential
instruction.

Condition bits affected: None

For programming examples using subroutines I see Section 5.3.

3.9.3

Format:

I 0 1

CNC CALL IF NO CARRY

Label Operand
_______ SUB

------- ~
o 0 o , 0 11 , 0 I ,L ,0, ~ ~ I? 9 x X H I ADD

, , , « ,

Description: If the carry bit is zero I a CALL is performed to subroutine SUB.
The program counter is saved on the address stack I and execution continues
with the first instruction of SUB.

3-72

If the carry bit 1s one, program execution continues with the next sequenUal
instruction.

Condition bits affected: None

For programming examples using subroutines, see Section 5.3.

3.9.4 CZ CALL IF ZERO

Format:

Label

[0 d 1 o

Operand
SUB

~~ --

Description: If the zero bit is one, a CALL is performed to subroutine SUB.
The program counter is saved on the address stack, and execution continues
with the first instruction of SUB.

If the zero bit is zero, program execution continues with the next sequential
instruction.

Condition bits affected: None

For programming examples using subroutines, see Section 5.3.

3-73

3.9.5 CNZ CALL IF NOT ZERO

Fonnat:

Label Code Operand

_______ CNZ _______ ~
, *

Description: If the zero bit is zero, a CALL is performed to subroutine SUB.
The program counter is saved on the address stack I and execution continues
with the first instruction of SUB.

If the zero bit is one, program execution continues with the next sequential
instruction.

Condition bits affected: None

For programming examples using subroutines I see Section 5.3.

3.9.6

Format:

CM CALL IF MINUS

Label Code
CM

~-

Operand
SUB

/~
[0 111,1,0,0 11,0 I.L,O,W, Ap,D,1 X, X I,H,I ,Ap,DI

Description: If the sign bit is one (indicating a minus result), a CALL Is
performed to subroutine SUB. The program counter is saved on the address
stack, and execution continues with the first instruction of SUB.

3-74

If the sign bit is zero I program execution continues with the next sequential
instruction.

Condition bits affected: None

For programming examples using subroutines I see Section 5.3.

3.9.7 CP CALL IF PLUS

Format:

Label Code °Eerand
CP SUB

~ ~~
a 1 I a i 1 a

I a I 1 a I LOW ADD I x x I H I ~ ~ 91 I I I I I I I i I I

Description: If the sign bit is zero (indicating a positive resu It) I a CALL
is performed to subroutine SUB. The program counter is saved on the address
stack I and execution continues with the first instruction of SUB.

If the sign bit is one I program execution continues with the next sequential
in stru ction .

Condition bits affected: None

For programming examples using subroutines I see Section 5.3.

3.9.8 CPE CALL IF PARITY EVEN

3-75

Description: If the parity bit is one (indicating even parity) I a CALL is per­
formed to subroutine SUB. The program counter is saved on the address stack
and execution continues with the first instruction of SUB.

If the parity bit is zero I program execution continues with the next sequential
instruction.

Condition bits affected: None

For programming examples using subroutines I see Section 5.3.

3.9.9

Fonnat:

CPO CALL IF PARITY ODD

Label Code
CPO

Operand
SUB

G t 1 I 0 :' ~l J 1 , 0 [1 1. 01 t : 0, V{ lA, DID II X 1 X liB ~ ~ 9 ~]

Description: If the parity bit is zero (indicating odd parity) I a CALL is
performed to subroutine SUB. The program counter is saved on the address
stack I and execution continues with the first instruction of SUB.

If the parity bit is one I program execution continues with the next sequential
instruction.

Condition bits affected: None

For programming examples using subroutines I see Section 5.3.

3-77

3.10 RETURN FROM SUBROUTINE INSTRUCTIONS

This section describes the instructions used to return from subroutines.
These instructions transfer program control to the last address saved on the
address stack, and remove that address from the stack. A discussion of the
techniques and reasons for writing and using subroutines appears in Section
5.3.

Instructions in this class occupy one byte as follows:

10 oJx X X xiI I'
tl--___ O 0 0 I for RET

o 0 0 0 for RNC
o 0 1 0 for RNZ
o 1 0 0 for RP
o 1 1 0 for RPO
1 0 0 0 for RC
1 0 1 0 for RZ
1 1 0 0 for RM
1 1 1 0 for RPE

The general assembly language instruction format is:

Label
LABEL:

Code
OP

Operand

+ _, _____ blank

RC, RNC, RZ, RNZ, RM, RP, RPE, RPO

'--__________ Optional statement label

~-7R

3.10.1 RET RETURN

Operand

Description: The last address saved on the address stack (by a call
instruction) is removed from the stack and placed in the program counter.

Thus, execution proceeds with the instruction immediately following the
last call instruction.

Condition bits affected: None

For programming examples see Section 5.3.

3.10.2 RC RETURN IF CARRY

Format:

Label Code Operand
RC

t

Description: If the carry bit is one I a return operation is performed. Other­
wise, program execution continuec:: with the next sequential instruction.

3-79

Condition bits affected: None

For programming examples, see Section 5.3.

3.10.3 RNC RETURN IF NO CARRY

Format:

Label Code Operand

RN\

Description: If the carry bit is zero I a return operation is performed. Other­
wise I program execution continues with the next sequential instruction.

Condition bits affected: None

For programming examples I see Section 5.3.

3.10.4 RZ RETURN IF ZERO

Format:

Label Operand

10 I 0 11 I 0 I 1 1 0 III

DeSCription: If the zero bit is one I a return operation is performed. Otherwise,
program execution continues with the next sequential instruction.

3-80

:Condltion bltsaffected: None

£..orPf09r-amminq examples, see Section 5.3.

Rn'URNIf' NOT ZERO

Label Oper-and

Descrlption!ff the -ZerO bit ls z-ero, a return operation Is performed.
Otherwls-e .. proqram 'execution contlooeswith the next -sequential instructioft.

Condlt1onblts affected~Nonc

For programmittgexamples, see Section 5.3.

3 .16 •. ~ -:RM RETURN iF MIN-US·

F-Cmnat;

Oserand -

Description: If the sign bit is one (indicating a minus result) I a return
operation is performed.

Otherwise I program execution continues with the next sequential instruction.

Condition bits affected: None

For programming examples see Section 5.3.

3.10.7 RP

Format:

Label

RETURN IF PLUS

Code
RP

\
10 01 0 1 0 0)1 I I

Operand

Description: If the sign bit is zero I ~ indicating a positive result) I a return
operation is performed.

Otherwise I program execution continues with the next sequential instruction.

Condition bits affected: None

For programming examples see Section 5.3.

3-82

3.10.8 RPE

Fonnat:

Label

RETURN IF PARITY EVEN

Code
RPE

\
Operand

Description: If the parity bit is one (indicating even parity), a return
operation is perfonned.

Otherwise, program execution continues with the next sequential instruction.

Condition bits affected: None

For programming examples see Section 5. 3.

3.10.9 RPO

Format:

Label

RETURN IF PARITY ODD

Code
HPO

\
Operand

Description: If the parity bit is zero, (indicating odd parity), a return
operation is perfDnned.

3-H:3

Otherwise I program execution continues with the next sequential instruction.

Condition bits affected: None

For programming examples see Section 5.3.

3. 11 RST INSTRUCTION

This section describes the RST (restart) instruction, which is a special
pUrPose subroutine jump. This instruction occupies one byte.

Format:

Label Code
RST

I 0 I 0 I E , X I P 11, 0

Operand
EXP

Note: EXP must evaluate to a number in the range OOOB to lllB.

Description: The contents of the program counter are placed on the address
stack, providing a return address for later use by a RETURN instruction.

Program execution continues at memory address:

000 0 0 0 0 0 E X P 0 0 0 B

Normally, this instruction is used in conjunction with u, to eight eight-byte rou­
tines in the lower 64 words of memory in order to service interrupts to the pro­
cessor. The interrupting device causes a particular RST instruction to be
executed, transferring control to a subroutine which deals with the situation,
as descdbed in Section 6.

A RETURN instruction then causes the program which was originally running to
resume execution at the instruction where the interrupt occurred.

Condition bits affected: None

3-84

Example:

Label Code
RST

RST

RST
RST

Operand
10 - 7

D SHL 1

8
3

Comment
Call the subroutine at
address 24 (011 OOOB)
Call the subroutine at address
48 (11 OOOOB). D is equated
to lIB.
Invalid instruction
Call the subroutine at
address 24 (OllOOOB)

For detailed example s of interrupt handling see Section 6.

3.12 INPUT/OUTPUT INSTRUCTIONS

This section describes the instructions which cause data to be input to or
output from the 8008. Instructions in this class occupy one byte as
follows:

4 _____ 0 a E x P for IN

x X EX P for OUT (X X -I 0 0)

XXEXP is an input or output device number I which is a hardware characteristic
of the device I not under the programmer's control.

3-85

The general assembly language format is:

Label
LABEL:

~
OP

Operand
EXP
"-v-'

L bit value from 0 - 7 decimal for IN

5 bit value from 8 - 31 decimal for OUT

'----------IN or OUT

'-----------------Optionalinstruction label

3.12.1 IN INPUT

Format:

Label Code Operand
IN EXP

~
I 0 I I 0 1 0 1 E X I pi I I

Description: An eight bit data byte is read from input device number EXP
(0 - 7) and replaces the contents of the accumulator.

Condition bits affected: None

3-86

Example:

Label Code
IN

IN

IN

3.12.2 OUT OUTPUT

Format:

Label Code
OUT

E X
I I I

Operand
0

10/2

8

Comment
Read one byte from input
device #0 into the accumulator
Read one byte from input
device #5 into the accumulator
Invalid instruction

Operand
EXP

Description: The contents of the accumulator are written to output device
number EXP (8 - 31).

Condition bits affected: None

3-87

Example:

Label Code Operand
OUT 10

OUT IFH

OUT 7

3.13 HLT HALT INSTRUCTION

This section describes the HLT instruction.

This instruction occupies one byte.

Format:

Label Code
HLT

*
J 0,0,0,0,0,0,0,0 I

3-88

Comment
Write the contents of the
accumulator to output device #10
Write the contents of the
accumulator to output device #31
Invalid instruction

Operand

L_ blank

Description: The program counter is incremented to the address of the next
sequential instruction. The CPU then enters the STOPPED state and no further
activity takes place until an interrupt occurs.

3. 14 PSEUDO - INSTRUCTIONS

This section describes pseudo instructions recognized by the assembler.
A pseudo instruction is written in the same fashion as the machine instructions
described in Sections 3.3 - 3.13, but does not cause any object code to be
generated. It acts merely to pt;ovide the assembler with information to be
used subsequently while generatipg object code.

The general assembly language format of a pseudo - instruction is:

Label
NAMI:

Code
OP

NAME

Operand
OPND -----

Comment

Loperand, may be optional

EQU, SET, END, IF, ENDIF, MAC, ENDM

May be required, optional, or illegal

Note: Names on pseudo instructions do not end in colons, as do
labels on machine operations.

3-89

3.14.1 ORG

Fonnat:

Label

ORIGIN

Code
ORG ---

I-------Always blank

Operand
EXP

LA 14 - bit address

Description: The assembler's location counter I identified by the special
character $, is set to the value of EXP, which must be a valid 14 bit memory
address. The next machine instruction or data byte (s) generated will be
assembled at address EXP, EXP + 1, etc.

If no ORG appears before the first machine instruction or dara byte In th0
program I assembly will begin at location O.

Example 1:

Memory Assembled
Address Label Code Operand Data

ORG lOOOH
1000 MOV A,C C2
1001 ADI 2 0402
1003 IMP NEXT 445010

ORG lO50H
1050 NEXT: XRA A AS

=

The first ORG pseudo instruction informs the assembler that the object pro­
gram will begin at memory address lOOOH. The second ORG tells the as­
sembler to set its location counter to 1050H and continue assembling machine
instructions or data bytes from that point. Note that the range of memory
from 1006H to l04F is still included in the object program I but does not
contain assembled data. In particular I the programmer should not assume

3-90

that these locations will contain zero, or any other value.

Example 2:

The ORG pseudo instruction can perform a function equivalent to the DS
(define storage) instruction (see Section 3.2.4). The following two
sections of code are exactly equivalent:

Memory Assembled
Address Label Code
2COO MOV
2C01 IMP
2C04 DS
ZCI0 NEXT: XRA

3.14.2 EQU EQUATE

Format:

Label
NAME ---

°Eerand
A,C
NEXT

12
A

Code
EOU

Label

NEXT:

Code
MOV
IMP
ORG
XRA

°Eerand
EXP
'-v-"

°Eerand Data
A,C C2
NEXT 44102C
$+12

A AS

L An expres sion

Required name

Description: The symbol NAME is assigned the value of EXP by the assembler.
Whenever the symbol NAME is <encountered subsequently in the assembly,
this value will be used.

Note: A symbol may appear in the name field of only one EQU pseudo
instruction: I.e., an EOU symbol may not be redefined.

3-91

Example 1:

Before every assembly, the assembler performs the following EQU statements:

Label
A
B
C
D
E
H
L
M

Code
EQU
EQU
EQU
EOU
EOU
EOU
EOU
EOU

If this were not done, a statement like:

MOV C,A

would be invaUd, forcing the programmer to write:

MOV 2, 0

Example 2:

Operand.
o
1
2
3
4
5
6
7

The EQU and ORG pseudo instructions can define the DS operation of Section
3.2.4.

The following two sections of code are equivalent:

Memory Assembled
Address Label ~ Operand Label Code Operand Data
2COO MOV A,C MOV A,C C2
2COl IMP NEXT IMP NEXT 44072C
2C04 DATA: DS 3 DATA EOU $

ORG $+3
2C07 NEXT: XRA 0 NEXT: XRA A AS

A reference to DATA will address a three byte block of memory beginning at
location 2'C04H.

3-92

:L14.3 SET

Format:

Label
NAME

1

Code
SET

Required name

Operand
EXP ---
LAn exPres slon

Description: The symbol NAME is assigned the value of EXP by the assembler.
Whenever the symbol NAME is encountered subsequently in the assembly,
this value will be used unless changedby another SET instruction.

This is identical to the EOU operation I except that symbols may be de­
fined more than once.

Example:

Label Code Operand Assembled Data
IMMED SET 5

ADI IMMED 0405
IMMED SET 10H-6

ADI IMMED 040A

3-93

.3.14.4 END

Format:

Label

END OF ASSEMBLY

Code
END

Operand

Description: The E:ND statement signifies to the assembler that the physical
end of the program has been reached I and that generation of the object pro­
~am and (possibly) listing of the source program should now begin.

One and only one END statement must appear in every assembly I and it
must be the (physically) last statement of the assembly.

3-94

3.14.5

Format:

IF AND ENDIF CONDITIONAL ASSEMBLY

Label

~

f
blank

~

t
blank

Code
IF

statements

END IF

Operand
EXP ---LAn expression

blank---J

Description: The assembler evaluates EXP.

If EXP evaluates to zero I the statements between IF and ENDIF are ignored.
Otherwise the intervening statements are assembled as if the IF and ENDIF were
not pres ent.

Example:

Label Code Operand Assembled Data
COND SET OFFH

IF COND
MOV A/C C2
ENDIF

COND SET 0
IF COl' .. :D
MOV A/C
ENDIF
XRA C AA

3-95

3.14.6 MACRO AND ENDM MACRO DEFINITION

Fonnat:

Label
NAME
~

L ___ --=:1
Reguired name--·_·--_·

Code
MACRO

statements

ENDM

Operand
LIST ----L a list of expressions,

normally ASCII constants

.----
L---blank

Description: For a detailed explanation of the definition and use of marcos
together with programming examples, see Section 4.

The assembler accepts the statements between MACRO and ENDM as the
definition of the macro named NAME. Upon encountering NAME in the code
field of an instruction, the assembler substitutes the parameters specified
in the operand field of the instruction for the occurences of LIST in the
macro definition, and assembles the statements.

Note: The pseudo instruction MACRO may not appear in the list of statements
between MACRO and ENDM; 1. e., macros may not define other macros.

3-96

4.0 PROGRAMMING WITH MACROS

Macros (or macro instructions) are an extremely important tool provided
by the assembler. Properly utilized, they will increase the efficiency of
programming and the readability of programs. It is strongly suggested that
the user become familiar with the use of macros and utilize them to tailor
programming to suit his specific needs.

4 . 1 WHAT ARE MACROS?

A macro is a means of specifying to the assembler that a symbol (the
macro ~) appearing in the code field of a statement actually stands
for a group of instructions. Both the macro name and the instructions for
which it stands are chosen by the programmer.

Consider a simple macro which shifts the contents of the accumulator one
bit position right, while a zero is shifted into the high order bit position.
We will call this macro SHRT, and define it as follows:

Label
SHRT

Code
MACRO
RRC
ANI
ENDM

We can now reference the macro as follows:

Label Code
MOV
SHRT

which would be equivalent to:

Label Code
MOV
RRC
ANI

4-1

Operand

Rotate accumulator right
7FH Clear high order bit

Operand
A,M

Operand
A,M

7FH

The example above illustrates three aspects of a macro; the definition,
the reference and the expansion.

The definition specifies the instruction sequence that is to be represented by
the macro label. Thus:

SHRT MACRO
RRC
ANI 7FH
ENDM

is the definition of SHRT I and specifies that SHRT stands for the two in­
structions:

RRC
ANI 7FH

Every macro must be defined once in a program.

The reference is the pOint in a program where the macro is referenced. A
macro may be referenced any number of times by inserting the macro label
in the code field of an instruction:

MOV
SHRT
MOV

A,M

A,M
; Macro reference

The expansion of a macro is the complete instruction sequence represented
by the macro reference:

MOV
RRC
ANI
MOV

A,M

7FH
M,A

} Ma cro expansion

The macro expansion will not be present in 6 source program, but its machine
language equivalent will be generated by the assembler in the object program.

You may question the value of representing two instructions by a macro, but
consider a more complex case, a macro that shifts the accumulator right by
a variable number of bit position, as defined by the D register contents.

I

4-2

This macro is labeled SHV, and defined as follows:

Label
SHV
LOOP:

Code
MACRO

RRC
ANI
DCR
JNZ
ENDM

Operand

7FH
D
LOOP;

The SHV macro may be referenced as follows:

Label Code Operand
MOV A,M
MVI D, 3
SHV
MOV M,A

rotate right once
clear the high-order bit
decrement shift counter
return for another shift

specify 3 right shifts

The above instruction sequence is equivalent to the expansion:

Label Code Operand
MOV A,M
MVI D, 3

LOOP: RRC
ANI 7FH
DCR D
JNZ LOOP
MOV M,A

Note that the D register is no longer available for general use across the SHV
macro, since it is used to specify shift count.

A better method is to write a macro which uses an arbitrary register and loads
its own shift amount using macro parameters. The macro is defined as
follows:

4-3

Label
SHV

Operand
REG, AMT

Code
MACRO
MVI
RRC
ANI
DCR
JNZ
ENDM

REG, AMT; load shift count into register specified by REG
LOOP:

7tH
REG
LOOP

; perform right rotate
; clear high order bit
; decrement shift counter

SHV may now be referenced as follows:

MOV A,M
Assume Register C is free, and a 5 place shift 1s needed,

SHV C, 5

The expansion of which is given by:

LOOP:
MVI
RRC
ANI
DCR
JNZ

7FH
C

LOOP

Here is another example of an SHV reference:

Assume Register E is free, and a 2 place shift is needed,

SHV E, 2

and the equiva lent expansion:

MVI E, 2
LOOP: RRC

ANI 7FH
DCR E
JNZ LOOP

While the preceding examples will provide a general idea of the efficiency
ilnd capabilities of macros, a rigorous description of each aspect of mucro

4-4

programming is given in the next section.

4.2 MACRO TERMS AND USE

Section 4.1 explains how a macro must be defined, is then referenced, and
how every reference has an equivalent expansion. Each of these three
aspects of a macro will be described in the following subsections.

4.2.1

Format:

MACRO DEFINITION

Label
NAME

Code
MACRO

macro body

ENDM

Operand
PLIST

Description: The macro definition produces no assembled data in the object
program. It merely indicates to the assembler that the symbol NAME is to be
considered equivalent to the group of statements appearing between the
pseudo instructions MACRO and ENDM (Section 3. 14.6). This group of
statements, called the macro body, may consist of assembly language
instructions, pseudo instructions (except MACRO or ENDM), comments, or
references to other macros.

PLIST is a list of expressions (usually unquoted character strings) which
indicate parameters specified by the macro reference that are to be sub­
stituted into the macro body. Since these expressions serve only to mark the
PQsitions where macro parameters will be inserted into the macro body, they
are often called dummy parameters.

Example:

The following macro will load the Hand L registers with the memory address of
the label specified by the macro reference.

4-5

Label
LOAD

LABEL:

INST:

The reference:

Code
MACRO

MVI
MVI

ENDM

LOAD

is equivalent to the expansion:

The reference:

MVI
MVI

LOI\D

is equivalent to the expansion:

MVI
MVI

Operand
ADDR

H, ADDR SHR 8
L, ADDR AND OFFH

LABEL

H, LABEL SHR 8
L, LABEL AND OFFH

INST

H, INST SHR8
L, INST AND OFFH

The MACRO and ENDM statements inform the assembler that when the symbol
LOAD appears in the code field of a statement, the characters appearing in the
operand field of the statement are to be substituted everywhere the symbol
ADDR appears in the macro body, and the two MVI instructions are to be
a s sembled at that point of the program.

4-6

4.2.2

Fonnat:

MACRO REFERENCE OR CALL

Label Code
NAME

Operand
PLIST

NAME must be the name of a macro; that is, NAME appears in the label field
of a MACRO pseudo - instruction.

PLIST is a list of expressions. Each expression is converted to a character
string, and the resulting strings are substituted into the macro body as indicated
by the operand field of the MACRO pseudo instruction. Substitution proceeds
left to right; that is, the first string of P~IST replaces every occurrence
of the first dummy parameter in the macro body, the second replaces the second,
and so on.

If fewer parameters appear in the macro reference than in the definition, a
null string is substituted for the remaining expressions in the definition.

If more parameters appear in the reference than the definition, the extras
are ignored.

Example:

Given the macro definition:

Label
MACI

The reference:

Code
MACRO

XRA
DCR
ENDM

MACI

is equivalent to the expansion:

XRA
DCR

4-7

Operand
PI, P2, COMMeNT
P2
PI COMMENT

C,D

D
C

DECREMENT REG C'

DECREMENT REG C

The reference:

MACI

is equivalent to the expansion:

4.2.3

XRA
nCR

MACRO EXPANSION

E, B

B
E

The result obtained by substituting the macro parameters into the macro body
is called the macro expansion. The assembler assembles the statements of
the expansion exactly as it assembles any other statements. In particular I
every statement produced by expanding the macro must be a legal assembler
statement.

Example:

Given the macro definition:

Label
MAC

the reference:

Code
MACRO

INR
ENDM

MAC

will produce the legal expansion:

INR

but the reference:

MAC

will produce the illegal expansion:

INR

4-8

Operand
PI
PI

B

B

A

A

which will be flagged a s an error.

There is one exception to this rule. Nonnally, a symbol may appear in the
label field of only one instruction. If a label appears in the body of a
macro, however, it will be generated whenever the macro is referenced.
(See Section 4.0). To avoid multiple label conflicts, the assembler treats label:
within macros as local labels, applying only to a particular expansion of
a macro. Thus each "jump to LOOP" instruction generated in the Section
4.0 example refers uniquely to the label LOOP: generated in the local macros ex­
pansion.

4.2.4 PARAMETER SUBSTITUTION

The operand field of the MACRO pseudo instruction specifies which character
strings in the macro body (the dummy parameters) are to be replaced by
parameters listed in the operand field of the macro calls. For this sub­
stitution to occur, the strings in the macro body must be surI\Junded by sep­
erators (comma, blank I colon I etc.) I and must exactly match the dummy
parameters. Substitution will never be made for a portion of a symbol.

For example, consider the macro definition:

MACI

ONE:
REGI:

MACRO
ADI
INC
MOV
XRA
ENDM

REG, AMT
AMT
REGI
REG,A
A

macro body

Although the characters REG appear three times within the macro body, the
only place parameter substitution for REG will occur is at line ONE:, since
this is the only place REG is not part of a larger symbol.

Thus, the macro reference:

MACI D, 6

will produce the expansion:

4-9

ONE:
REG l~ .

ADI
INC
MOV
XRA

6
REGI
D,A
A

The programmer must be careful to choose dummy parameters which do not
duplicate operation codes, labels, or symbol names used within the macro
body, to avoid unwanted substitution.

For example, suppose a macro has one parameter which specifies an accu­
mulator increment, and the programmer (unwisely) calls it INR. This could
easily cause trouble, as follows:

Given the macro definition,

MAC2

OUT:

the macro reference:

MACRO
ADD
INC
INR

ENDM

MAC2

INR
INR
OUT
H

6

will cause the assembler to produce the invalid expansion:

OUT:

ADD
INC
6

6
OUT
H -.. ..--.;... Illegal instruction

When a parameter specified by a macro reference is an expression, it is
evaluated just before the macro expansion is produced. This allows identical
macro calls to produce different results.

For example, suppose the following macro is defined at the beginning of a
program:

4-10

MAC3

COUNT

MACRO
MVI
SET
ENDM

Further suppose that the statement:

COUNT SET

REG, AMT
REG, AMT
COUNT + 1

o

has been written before the first reference to MAC3 setting the value of
COUNT to zero.

Then the first macro reference:

MAC3 D, COUNT * 2

will cause the assembler to evaluate COUNT * 2, and to substitute a value
of zero for the dummy parameter AMT.

Expansion produced:

COUNT:
MVI
SET

D, 0
COUNT + 1

The second statement of the expansion increases the value of COUNT to
one. If the macro reference:

MAC3 D, COUNT * 2

appears a second time in the program, COUNT * 2 will again be evaluated,
producing the expansion:

COUNT:

a third reference

will produce the expansion

COUNT:

MVI
SeT

MAC

MVI
SET

4-11

D, 2
COUNT + 1

D, COUNT * 2

D, 6
COUNT + 1

The value of macro parameters is determined and passed into the macro body
at the time of the macro reference, before the expansion is produced. This
evaluation may be delayed by enclosing a parameter in quotes, causing the
actual character string to be passed into the macro body. The string will then
be evaluated when the macro expansion is produced.

Example:

Suppose that the following macro MAC4 is defined at the beginning of the
program:

MAC4 MACRO PI

ABC SET 14

DB PI

ENDM

Further suppose that the statement:

ABC SET 3

has been written before the first reference to MAC4, setting the value of
ABC to 3.

Then the macro reference:

MAC4 ABC

will cause the assembler to evaluate ABC and to substitute the value 3 for
parameter PI, then produce the expansion:

ABC Sr.T 14

DB 3

If, however, the user had instead written the macro reference:

MAC4 'ABC'

the assembler would evaluate the expression' ABC', producing the characters
ABC as the value of parameter Pl. Then the expansion is produced I and, since
ABC is altered by the first statement of the expansion, PI will now produce the
value 14.

4-12

Expansion produced:

ABC SET

DB

14

ABC

4-13

Assembles as 14

4.3 REASONS FOR USING MACROS

The use of macros is an important programming technique that can substantially
ease the user's task in the following ways:

(a) Often, a small group of instructions must be repeated many times
throughout a program with only minor changes for each repetition.

For example, the load H and load L instructions must be used every
time an arbitrary memory location is referenced. Macros can reduce
the tedium (and resultant increased chance for error) associated
with these operations.

(b) If an error in a macro definition is discovered, the program can be
corrected by changing the definition and reassembling. If the same
routine had been repeated many times throughout the program without
using macros, each occurrence would have to be located and changed.
Thus debugging time is decreased.

(c) Duplication of effort between programmers can be reduced. Once the
most efficient coding of a particular function is discovered, the
macro definition can be made available to all other programmers.

(d) As has been seen with the SHRT (shift right) macro, new and useful
instructions can be easily simulated.

4-14

4 .4 USEFUL MACROS

4.4.1 LOAD ADDRESS MACRO

The following macro I LXI I load s two adj acent regi sters (B and C I D and E I or
Hand L) with the high-order and low-order bytes I respectively I of a sixteen
bit data quantity. The primary purpose of this macro is to load as memory
addres s into the Hand L registers.

This operation is performed so frequently that the definition of LXI is built into
the assembler. Thus« the programmer may write LXI in the code field of a
statement without previously defining it. This is the only macro which is
buHt into the asseIlibler.

Macro definition:

Label
LXI

Macro reference:

Macro expansion:

Code
MACRO

MVI
MVI

ENDM

LXI

MVI
MVI

Operand
REG, ADDR
REG I ADDR SHR 8
REG + 1« ADDR AND OFFH

H I DATA 1

H, DATA 1 SHR 8
H+l I DATA 1 AND OFFH

If H is equated to 5, H + I will be assembled as 6, indicating the L register.

4-15

The following macros are useful examples which are not built into the assembler.
Therefore, they must be defined in uny program which uses them.

4.4. 2 LOAD INDIRECT MACRO (WITHOUT SUBROUTINES)

The following macro I LIND, loads register Rl indirect from memory location
INADD. Register RJ is used to hold intermediate address information.

Macro definition:

Label
LIND

LINN:

Code
MACRO

LXI
MOV
INR
JNZ
INR

MOV
MOV
MOV
MOV

ENDM

Operand
RI, INADD, RJ
H, INADD
RI, M
L
LINN
H

RJ, M
H, RI
L, RJ
RI,M

Comment

Load the indirect address
Load the high-order byte
Point to low-order byte
Bypass H. o. increment if non-zero
result

; Load L. o. byte of memory address

Load RI indirect

4-16

Macro reference:

Load register C indirect with the contents of memory location
LABEL. Use register D as a scratch register.

LIND C, LABEL, D

Macro expansion:

LINN:

4.4.3

MVI
MVI
MOV
INR
JNZ
INR'
MOV
MOV
MOV
MOV

H, LABEL SHR 8
L, LABEL AND OFFH
C,M
L
LINN
H
D,M
H, C
L, D
C,M

MEMORY INCREMENT SUBROUTINE AND LOAD INDIRECT MACRO
(WITH SUBROUTINE)

The programming concept of subroutines is described in Section 2, and a
number of examples are provided in Section 5. However I the memory in­
crement subroutine is introduced here to show how there is frequently a trade
off between the use of macros and the use of subroutines.

While macros are useful programming aids, they do not necessarily econo­
mize memory use. Thus in the macro of Section 4.4.2, the five byte
instruction sequence:

INR
JNZ
INR

L
LINN
H

will be coded every time the Load Indirect macro is called, or any time an
increment memory operation is required. Memory increment is such a common
operation that it is more economically programmed as a subroutine that will
occur only once in memory, and will be called when needed. The memory
increment subroutine is:

4-17

MINC INR
RNZ
INR
RET

L

H

Increment low-order address byte
Return from subroutine if no carry
Increment high-order address byte
Return from subroutine unconditional

A load indirect macro using the memory increment subroutine may be defined
as follows:

Label Code Operand Comment
; Load register RI indirect from memory location
; INADD
LINS

Register
MACRO

LXI
MOV
CALL
MOV
MOV
MOV
MOV

ENDM

RJ is used to hold intermediate data
RI I INADD I RJ
H, INADD
RI, M
MINC
RJ/ M
H, RI
L, RJ
RI,M

Load the indirect address
Load the high-order direct address byte
Increment the memory address
Load the low-order direct address byte
Transfer direct address to
Hand L registers
Load desired value

When macro LINS is executed, the sequence is as follows:

H,INADD

R L

Z

R H

B,ru T

L, RJ

V RI, M

4-1£1

(a) return if low order byte incremented only
(b) return if low order byte increment is from OFFH to OOH, so high order

byte is also incremented

The macro LINS and the subroutine MINC may each reside anywhere in memory.
Note that the CALL MINC instruction uses three bytes and the MINC sub­
routine uses four bytes. If the LINS macro occurs just once, the increment
portion will require 3 + 4 = 7 bytes versus the 5 bytes of macro LIND. If
the LINS macro occurs twice, the increment portion will require 2 x 3 + 4 = 10
bytes, versus 2 x 5 = 10 for macro LIND. If the LINS macro occurs ten times,
the increment portion will require 10 x 3 + 4 = 34 bytes versus 10 x 5 = 50
bytes for macro LIND. Clearly a considerable memory saving results when
the macro is frequently used.

The single penalty incurred by using subroutines is that normal programming
techniques only allow subroutines to be called to a depth of 7. Most users
of the 8008 will not be hindered by this limitation, and use of macro
LTNS is recommended over macro LIND.

4-19

4.4.4 OTHER INDIRECT ADDRESSING MACROS

Refer to the LINS macro definition of Section 4.4.4. Only one instruction in
this macro, the last MOV RI, M instruction, need be altered to create any
other indirect addressing macro. For example, substituting MOV M, RI
will create a "store indirect" macro. Providing J;U is the accumulator, sub­
stituting ADD M will create an "add to accumulator indirect" macro.

As an alternative to having Load indirect, store indirect, and other such
indirect macros, we could have a create indirect address macro, followed
by selected instructions. This alternative approach is illustrated for indexed
addressing in Section 4.4.5.

4.4.5 CREATE INDEXED ADDRESS MACRO

The following macro, IXAD, loads the address registers (Hand L) with the
base address BSADD, plus the 16 bit index formed by register RJ (high order
byte) and RK (low order byte) .

Macro definition:

Label
IXAD

Code
MACRO

LXI
MOV
ADD
MOV
MOV
ADC
MOV

ENDM

Operand
RJ, BSADD, RK
H, BSADD
A, L
RK
L, A

A, H
RJ
H, A

4-20

Comment

Load the base address
Move L. O. byte to accumulator
Add the L.O. index byte
Return sum to L
Move H. O. byte to accumulator
Add the H. 0, byte of index with carry
Return H. O. address byte to H

Macro reference:

The address created in Hand L by the following macro
ca 11 will be Label + 012 EH

MVI D, 1
MVI E, 2EH
IXAD D, LABEL, E

Macro expansion:

MVI D, 1
MVI E, 2EH
MVI H, BSADD SHR 8
MVI H + I, BSADD AND 0 FFH
MOV A, L
ADD E
MOV L, A
MOV A, H
ADC D
MOV H, A

Consider now a program to successively load data bytes from a table origined
at TBLE, tncrementing a counter every time a negative value (high order bit = 1)
is encountered. This program is simply implemented as illustrated below.
We will assume that the table is terminated by a byte holding OFFH, which
acts as an end of table marker.

Label

LOOP:

LPI:

Code
XRA
MOV
MOV
MOV
IXAD
MOV
AD!
JP
INR
CPI
JNZ
DCR
HLT

Operand
A
B, A
C, A
D, A
B, TBLE, C
A,M
o
LPI
D
OFPH
LOOP
D

4-21

Comment
Accumulator = 0
Zero Band C registers to

use as the index
Zero D register as counter
Compute indexed address
Load next data byte
Add zero to set condition bits
Bypass increment if positive
Increment D if negative
Test for end
Return to loop if not zero
At end I decrement D for end byte
End

5.0 PROGRAMMING TECHNIQUES

This section describes some techniques other than macros which may be of
help to the programmer.

5.1 BRANCH TABLES PSEUDOSUBROUTINE

Suppose a program consists of several separate routines, any of which may
be executed depending upon some initial condition (such as a number pasfied
in a register). One way to code this would be to check each condition
sequentially and branch to the routines accordingly as follows:

CONDITION =- CONDITION 1?
IF YES BRANCH TO ROUTINE 1
CONDITION = CONDITION 2?
IF YES BRANCH TO ROUTINE 2

•
•

BRANCH TO CONDITION N

A sequence as above is inefficient, and can be improved by using a branch
table.

The logic at the beginning of the branch table program computes an index
into the branch table. The branch table itself consists of a list of starting
addresses for the routines to be branched to. Using the table index, the
branch table program loads the selected routine's starting address into the
address bytes of a jump instruction, then executes the jump. For example,
consider a program that executes one of eight routines depending on which bit
of the accumulator is set:

5-1

Jump to routine 1 if accumulator holds 00000001
" " " 2 " " II 00000010
.. .. " 3 " " .. 00000100
.. " " 4 " 00001000
" " It 5 " " "00010000
II II " 6 II " II 00100000
.. " II 7 II II II 01000000
II II II 8 II II "10000000

A program that provides the above logic is given at the end of this section.
The program is termed a "pseudosubroutine" because it is treated as a sub­
routine by the programmer, (L e. it appears just once in memory), but it is
entered via a regular JUMP instruction rather than via a CALL instruction.
This is possible because the branch routine controls subsequent execution,
and will never return to the instruction following the call:

Main Program

............. - ---.

t

Branch Table
Program

- -.

normal subroutine return
sequence not followed by
branch table program

5-2

Jump
Routines

Label
START:
GTBIT:

GETAD:

JUMP:

BT8L:

Code
MVI
RAR
JC
INR
INR
JMP
MVI
IXAD

MOV
LXI
MOV
INR
IXAD
MOV
LXI
MOV
JMP

IMP

DW
DW
DW
DW
DW
DW
DW
DW

Operand
E, 0

GETAD
E
E
GTBIT
D, 0
BTBL, D, E

A, M
H, JUMP+l
M, A
E
BTBL, D,E
A, M
H, JUMP+2
M, A
JUMP

o

ROUTl
ROUT2
ROUT3
ROUT4
ROUTS
ROUT6
ROUT7
ROUT8

E will hold branch table index

A one bit was found; form address
E=E+2 to point to next address

in branch table

F and L address BTBL+index
(see Secti()n 4.4)
Get first byte of address

Store in jump instruction

Get second byte of address

Store in jump instruction

Dummy jump instruction

Branch table. Each entry
is a two byte address

The control routine at START computes an index into the branch table (BTBL:)
corresponding to the bit of the accumulator that is set. It then transfers the
address held in the corresponding branch table entry to the second and third
bytes of the jump instruction (at JUMP:) and executes the jump instruction)
thus transferring control to the selected routine.

CAUTION: The location JUMP: must appear in read/write memory in order for
this routine to work correctly. If JUMP: is located in read-only memory, it is
impossible to store the address bytes into the jump instruction.

5-3

5.2 SOFTWARE MULTIPLY AND DIVIDE

The multiplication of two unsigned 8 - bit data bytes may be accomplished by
one of two techniques; repetitive addition, or use of a register shifting
operation.

Repetitive addition provides the simplest, but slowest form of multiplication.
For example, 2AH * 74H may be generated by adding 74H to the (initially
zeroed) accumulator 2AH times.

Using shift operations provides faster multiplication. Shifting a byte left
one bit is equivalent to multiplying by 2, and shifting a byte right one bit
is equivalent to dividing by 2. The following process will produce the correct
2 byte result of multiplying a one byte multiplicand by a one byte multiplier:

(a) Test the least significant bit of the multiplier.
If zero, go to step b. If one, add the multiplicand to the most
significant byte of the result.

(b) Shift the entire two byte result right one bit position.

(c) Repeat steps a and b until all 8 bits of the multiplier have been
tested.

For example, consider the multiplication:

2AH * 3CH = 9D8H

5-4

Start

MULTIPLIER

00111100

MULTIPLICAND

00101010

HIGH ORDER BYTE

OF RESULT

00000000

LOW ORDER BYTE

OF RESULT

00000000
Step 1 a ------- __________________________ _

b 00000000 00000000
Step 2 a ----------------------------------

b 00000000
Step 3 a----------------------------- _____ 00101010

00000000
00000000
00000000
00000000
10000000
10000000
11000000
11000000
01100000

b 00010101
Step 4 a --------------- ------------------- 00111111

b 00011111
Step 5 a------------------- _______________ 01001001

b 00100100
Step 6 a------------ ______________________ 01001110

b 00100111
Step 7 a--------------------- ____________ _

b 00010011 10110000
Step 8 a---------------------- ___________ _

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

b 00001001 11011000

Test multiplier O-bit; it is 0, so shift 16 bit result right one bit

Test multiplier I-bit; it is 0, so shift 16 bit result right one bit.

Test multiplier 2-bit; it is 1, so add 2AH to high order byte of result and
shift 16 bit result right one bit.

Test multiplier 3-bit; it is 1, so add 2AH to high order byte of result and
shift 16 bit result right one bit.

Test multiplier 4-bit; it is 1, so add 2AH to high order byte of result and
shift 16 bit result right one bit.

Test multiplier 5-bit; it is 1, so add 2AH to high order byte of result and
shift 16 bit result right one bit.

Test multiplier 6-bit: it is 0, so shift 16-bit result right one bit.

Test multiplier 7-bit; it is 0, so shift 16-bit result right one bit.

5-5

The result produced is 09D8.

The process works for the following reason:

The result of any multiplication may be written:

Equation 1: BIT 7 *MCND*2 7 + BIT 6 *MCND*2 6 + ••• + BITO *MCND*20

where BITO through BIT 8 are the bits of the multiplier (each equal to zero
or one), and MCND is the multiplicand.

For example:

MULTIPLICAND MULTIPLIER
00001010 * 00000101 =

0*OAH*2 7 + 0*OAH*2 6 + 0*OAH*2 5 + 0*OAH*2 4 +

0*OAH*23 + 1 *OAH*22 + 0*OAH*2 1 + 1 *OAH*2 0 =

00101000 + 00001010=-00110010 =0 5010

Adding t~ multiplicand to the high order byte of the result is the same as adding
MCND*2 to the full 16-bit result; shifting the I6-bit result one position
to the right is equivalent to multiplying the result by2- I (dividing by 2).

Therefore, step one above produces:

(BITO f.. MCND * 28) * 2- 1

Step two produces:

=

(BITO * MCND * 28) * 2- 1 + (BITI *MCND*28»*2-1

BITO*MCND*2 6 + BIT1 *MCND*2 7

And so on, until step eight produces:

BITO * MCND * 20+ BIT1 *MCND*2 I+ •.• + BIT7*MCND*2 7

which is equivalent to Equation 1 above, and therefore is the correct result.

Since the multiplication routine described above uses a number of important
programming techniques, a sample program is given with comments.

5-6

The program uses the B register to hold the most significant byte of the result I
and the C register to hold the least significant byte of the result.

The 16 bit right shift of the result is performed by two rotate-right-through­
carry instructions:

Zero carry and fhen rDtate B

B c

Then rotate C to complete the shift

B c

I X I ...

Register D holds the multiplicand I and register C originally holds the multiplier.

5-7

-

MULT: MVI B I 0 Initialize most significant byte
of result

MVI E I 9 Bit counter
MULTO: MaV A, C Rotate least significant bit of

RAR multiplier to carry and shift
MOV C,A low order byte of result.
DCR E
IZ DONE Exit if complete
MaV A, B
INC MULTI
ADA D Add multiplicand to high-order byte

of result if bit was a one.
MULT 1: RAR Carry =0 here; shift high-order

byte of resu It
MaV B, A
IMP MULT

An analagous procedure is used to divide an unsigned 16 bit number by an
unsigned 8 bit number. Here, the process involves subtraction rather than
addition, and rotate-left instructions instead of rotate-right instructions.

The program uses the Band C registers to hold the most and least significnnt
byte of the dividend respectively, and the D register to hold the divisor. The
8 bit quotient is generated in the C register, and the remainder is generated
in the B register.

DIV: MVI
MOV

DIVO: MOV
MOV
RAL
MOV
DCR
IZ
MaV
RAL
SUB
INC
ADD
IMP

DIVl: RAL
MOV
MVI

E, 9
A, B
B/A
A, C

C,A
E
DIV!
A, B

D
DIVO
D
DIVO

E, A
A, OFFH

5-8

Bit counter

Rotate carry into C register; rotate
next most significant bit to carry

; Rotate most significant bit to
; high-order quotient
; Subtract division. If less than

high-order quotient, go to DIVO
; Otherwise add it back

Complement the quotient

XRA C
MOV C, A
MOV A, E
RAR

DONE:

5.3 MULTIBYTE ADDITION AND SUBTRACTION

The carry bit and the ADC (add with carry) instructions may be used to add
unsigned data quantities of arbitrary length. Consider the following addition
of two three-byte unsigned hexadecimal numbers:

32AF8A
+ 84BA90

B76AlA

This addition may be performed on the 8008 by adding the two low-order
bytes of the numbers, then adding the resulting carry to the two next higher
order bytes I and so on:

32

M
B7

carry::l

AF
BA
6A

SA
90
lA

carry::l

5-9

The following routine will perform this mult1byte addition, making these
assumptions:

The C register holds the length of each number to be added (in this case, 3).

The numbers to be added are stored from low-order byte to high-order byte
beginning at memory locations FIRST and SECND, respectively .

. The result will be stored from low-order byte to high-order byte beginning at
memory location FIRST, replacing the original contents of this number.

Memory be fore addition

FIRST 8A
~

FIRST+l AF
~

FIRST+2 32 ~

J

SECND 90

SECND+l BA ~

SECND+2 84

~
~

) +

..."

Memory after addition

lA

6A

~ FIRST+2

SECND

87

90

SECND+l BA

SECND+2 84

5-10

=.J + carry

=.J + carry

Label Code Operand Comment

IXAD MACRO INXRG, ADR
MVI H, ADR SHR 8
MVI L, ADR AND OFFH
MOV A,L
ADD INXRG
MOV L,A
JNC OUT
INR H

OUT:
ENDM

MADD: XRA A
MOV D,A Index reg! ster D = 0
MOV L, A Low order bit of E holds state of

carry (initially zero)
LOOP: IXAD D, SECND Hand L = address of next byte of SECND

MOV B, M B = next byte of SECND
IXAD D, FIRST Hand L = address of uext byte of FIRST
MOV A, E Restore state of carry bit
RAR (low order bit of E)
MOV A, M A = next byte of FIRST
ADC B Result of addition in accumulator
MOV M, A Store result in current byte of FIRST
RAL Save state of carry bit in low
MOV E, A order bit of E
DCR C Done if C = 0
JZ DONE
INR D Index = index + 1; point to next bytes
IMP LOOP Add next bytes

DONE:

FIRST: DB 90H
DB OBAH
DB 84H

SECND: DB 8AH
DB OAFH
DB 32H

'5-11 . ; .

When location DONE is reached, bytes FIRST through FIRST + 2 will contain
IA6AB7, which is the sum shown at the beginning of this section arranged
from low order to high order byte. (The reason multibyte numbers are usually
stored in this fashion is that it is easier to add numbers from low to high order
bytes, and it is easier to increment memory addresses than to decrement them).

The first time through the program loop, macro IXAD generates addres ses
SECND+O and FIRST+O in the Hand L registers, enabling the program to
access the two low-order bytes to be added. The carry produced by this
addition is saved by rotating the carry bit into the low-order bit of the E
register, since the carry could be altered before the next addition is performed.
The result is stored at FIRST+O.

The second time through the loop, register D contains I (the number one),
causing IXAD to generate generate addres ses SECND+ I and FIRST+ I. 'rhus,
the second bytes to be added are accessed, summed together with the carry
from the previous addition, and placed in FIRST+ I.

This process is repeated until the C register is decremented to zero.

The carry (or borrow) bit and the SBB (subtract with borrow) instruction may be
used to subtract unsigned data quantities of arbitrary length. Consider the
follOWing subtraction-of two two-byte unsigned hexadecimal numbers:

1301
-0503

ODFE

This subtraction may be performed on the 8008 by subtracting the two low-order
bytes of the numbers, then using the resulting carry bit to adjust the difference
of the two higher-order bytes if a borrow occurred (by using the SBBinstruction).

Low order subtraction (carry bit=O indicating no borrow):

o 0 0 0 0 0 0 1 = 01H
1 1 I 1 1 1 0 1 = -(03H+carry)
1 1 1 1 1 1 1 0 = OFEH, the low order result

p overflow = 0 I setting carry = 1 indicating a borrow

High order subtraction:

o 0 0 1 0 0 1 1 = 13H
1 1 1 1 1 0 1 0 = -(05H+carry)
00001 101

I overfiuw = I, resetting the carry bit indicating no borrow.

Whenever a borrow has occurred, the SBB instruction increments the subtrahend
by one, which is equivalent to borrowing one from the minuend.

5-12

In order to create a multibyte subtraction routine I it is neces sary only to
duplicate the multibyte addition routine of this section I changing the ADC
instruction to an SBB instruction. The program will then subtract the number
beginning at SECND from the number beginning at FIRST I replacing the result
at FIRST.

5.4 SUBROUTINES

Frequently I a group of instructions must be repeated many times in a program.
As we have seen in Section 4 I it is somtimes helpful to define a macro to produce
these groups. If a macro becomes too lengthy or must be repeated many times I
however, better economy can be obtained by using subroutines.

A subroutine is coded like any other group of assembly language statements,
and is referred to by its name, which is the label of the first instruction.
The programmer references a subroutine by writing its name in the operand
field of a CALL instruction. When the CALL is executed, the address of the
next sequential instruction after the CALL is "pushed" onto the address stack,
(See Section 2.1. 2),and program execution proceeds with the first instruction
of the subroutine. When the subroutine has completed its work, a RETURN
instruction is executed, which causes the top address in the stack to be
"pulled" into the program counter I causing program execution to continue with
the instruction following the CALL. Thus I one copy of a subroutine may be
called from many different pOints in memory, preventing duplication of code.

5-13

Example:

Subroutine MINC increments a memory address passed in the Hand L registers
and then returns to the instruction following the last CALL statement executed.

MINC: INR
RNZ
INR
RET

L

H

Increment low order addres s byte
If not zero, return to ca lling routine
Increment high order address byte
Return unconditionally

Assume MINC appears in the following program:

Arbitrary
Memory
Address

2COO
2C03

CALL MINC

2EFO CALL MINC
2EF3

Memory
Address

MINC

When the first call is executed, address 2C03 is written to the address stack,
and control is transferred to 3COO. Execution of either RETURN statement in
MINC will cause the top entry to be read from the address stack and placed
in the program counter, causing execution to continue at 2C03 (since the
CALL statement is three bytes long) •

Address stack
before CALL

ADR 1
ADR 2
ADR 3
ADR 4
ADR 5
ADR 6
ADR 7

~.

Stack while MINC
is executing

5-14

Stack after RETURN
is performed

2C03H
ADR 2
ADR 3
ADR4
ADRS
ADR 6

"--ADR7

When the second callis executed, address 2EF3 is pushed onto the stack,
and control is again transferred to MINC. This time, either RETURN in­
struction will cause execution to resume at 2EF3.

Note that MINC could have called another subroutine during its execution,
causing another address to be pushed onto the stack. This can occur only
up to seven levels, however, since the stack can only hold seven addresses.
Beyond this point I the RETURN addresses will be lost and RETURN instructions
will transfer program control to incorrect addresses.

5.5 TRANSFERRING DATA TO SUBROUTINES

A subroutine often requires data to perform its operations. In the simplest
ca se, this data may be transferred in one or more registers. Subroutine
MINe in Section 5.4 for example, receives the memory address upon which it
operates in the Hand L registers.

Sometimes it is more convenient and economical to let the subroutine load its
own registers. One way to do this is to place a Ust of the required data,
(called a parameter list), in some data area of memory I and pass the address
of this Ust to the subroutine in the Hand L registers.

For example, the subroutine ADSUB expects the address of a three byte para­
meter Ust in the Hand L registers. It adds the first and second bytes of the
list, and stores the result in the third byte of the Ust:

5-15

Label Code Operand Comment

LXI H, PLIST · Load Hand L with addresses ,
of the parameter list

CALL AD SUB · Call the subroutine ,
RET1:

PLlST: DB 6 · First number to be added ,
DB 8 · Second number to be added ,
DS 1 · Result will be stored here ,

LXI H, L1ST2 Load Hand L registers for
CALL ADSUB · another call to ADSUB ,

RET2:

LIST2: DB 10
DB 35
DS 1

ADSUB: MOV A, M · Get first parameter ,
CALL MINC · Increment memory address ,
MOV B, M · Get second parameter ,
ADD B Add first to second
CALL MINC Increment memory address
MOV M, A Store result at third parameter store
RET Return unconditionally

The first time ADSUB is called, it loads the A and B registers from PLIST and
PLIST + I respectively, adds them and stores the result in PLIST + 2. Return
is then made to the instruction at RETI:.

5-16

First call to ADSUB:

H L
ADSUB: I 1 I I

..
06 PLIST

08 PLIST+l

OEH PLIST+2

The second time ADSUB is called, the Hand L registers pOint to the para-
meter list LIST2. The A and B registers are loaded with 10 and 35 respectively,
and the sum is stored at LIST2+2. Return is then made to the instruction
at RETl.

Second call to ADSUB:

H L
ADSUB: [J I

OA LIST2

23 LIST2+1

2D LIST2+2

Note that the parameter lists PLIST and LIST2 could appear anywhere in memory
without altering the results produced, by ADSUB.

This approach does have its limitations, however. As coded, ADSUB must
receive a list of two and only two numbers to be added I and they mu st be
contiguous in memory. Suppose we wanted a subroutine (GENAD) which
would add an arbitrary number of bytes I located anywhere in memory I and
leave the sum in the accumulator.

5-17

This can be done by passing the subroutine a parameter list which is a list
of addresses of parameters, rather than the parameters themselves, and sig­
nifying the end of the parameter list by a negative number:

Call to GENAD:

GENAD: I
H

J

This subroutine would appear as follows:

5-18

L

()
...

L-
ADRI

ADR2

ADR3

ADR4

FFFF

~PARMI

WPARM4

WPARM3

[;]PARM2

Label

.P LIS T

PARMi
PARM4

PARM3

PARM2

GENAD:
LOOP:

LXI
CALL

DW
DW
DW
DW
DW

DB
DB

DB

DB

XRA
MOV
MOV
MOV
MOV

CALL
MOV

MOV
ORA
MOV

RM

MOV
ADD
MOV
MOV
CALL
CALI
IMP

Operand

H, PLIST
GENAD

PARMI
PARM2
PARM3
PARM4
OFFFFH

8
16

13

82

A
D, H
E, L
C,A
B t M

MINC
H,M

A, H
A
A, C

L, B
M
H,D
L, E
MINC
MINC
LOOP

5-19

Clear accumulator
Save address of parameter list

Save accumulator
Get low order addres s byte of first
parameter

Get high order address byte of first
parameter
Test high address byte for negative
Set condition bits
Restore accumulator - - does not affect
condition bits
Return if last address was negative:

accumulator holds sum
H + L hold address of parameter
Add parameter to accumulator

Increment to point to second parameter
Address (PLIST + 2)
Get next parameter

Note that GETAD could add any combination of the parameters with no change
to the parameters themselves. The sequence:

PLlST:

LXI
CALL -
DW
DW
DW

H, PLIST
GE~

PARM4
PARMI
OrFFFH

would cause PARMI and PARM4 to be added, no matter where in memory they
might be located.

5-20

6.0 INTERRUPTS

Often, events occur external to the central processing unit which require
immediate action by the CPU. For example, suppose a device is sending/
receiving a string of 80 characters to/from the CPU, one at a time, at fixed
intervals. There are two ways to handle such a situation:

(a) A program could be written which inputs/outputs the first character,
stalls until the next character is ready (eg. executes a timeout by
incrementing a sufficiently large counter), then inputs/outputs the
next character I and proceeds in this fashion until the entire 80
character string has been received/transmitted.

This method is referred to as programmed Input/Output.

(b) The device controller could interrupt the CPU when a character is
ready to be input, or the device is ready to receive a character,
forcing a branch from the executing program to a special interrupt
service routine.

The interrupt sequence may be illustrated as follows:
"

INTERRUPT

Normal
Program--·--------~ .. I
Execution

Interrupt Service
Routine

6-1

Program
Execution
Continues

Any device may supply an RST instruction (and indeed may supply an
INTELLEC 8 instruction).

The following is an example of an Interrupt sequence:

ARBITRARY
MEMORY ADDRESS

3COB
-3COC

0000

INSTRUCTION

MOV C, B .. {Interrupt from Device 1

MOV E, ~ ______

Device 1 supplies
RST OH

Program Counter::;::
3COC written 0
to the stack.

Control transferred
to 0000

Instruction 1 ---- --------..
Instruction 2

RET------------------~

Stack read into
program counter

Device one Signals an interrupt as the CPU is executing the instruction at
3COB. This instruction is completed. The program counter remains set to
3COC, and the instruction RST OH supplied by device one is executed. Since
this is a call to location zero, 3COC is written to the address stack and
this is a call to location zero I OOOOH. (This subroutine may perform
jumps, calls, or any other operation). When the RETURN is executed, address
3COC is read from the stack and replaces the contents of the program counter,
causing execution to continue at the instruction following the point where the
interrupt occurred.

Note that an interrupting device may specify an instruction. For instance, if
HLT is specified, the only action taken by the CPU is to complete the current
instruction and then stop. The CPU will remain stopped until another interrupt

6-2

When the CPU recognizes an interrupt request from an external device, the
following actions occur:

1) The instruction currently being executed is completed.

2) The interrupting device supplies, via hardware, one instruction
which the CPU executes. This instruction does not appear
anywhere in memory, and the programmer has no control over
it, since it is a function of the interrupting device's controller
design. The program counter is not incremented before this
instruction.

The instruction supplied by the interrupting device is normally an RST
instruction I (see Section 3.11) I since this is an efficient one byte call
to one of 8 eight-byte subroutines located in the first 64 words of memory,
For instance I the teletype may supply the instruction

RST OR

with each teletype input interrupt. Then the subroutine which proces ses
data transmitted from the teletype to the CPU will be called into execution via
an eight byte instruction sequence at memory locations OOOOR to 0007R.

A digital input device may supply the instruction:

RST lR

Then the subroutine that processes the digital input signals will be called via
a sequence of instructions occupying memory locations 0008H to OOOFH.

Device a

Supplies RST OR Transfers control to 0000 Subroutine for • device a
0007

Device b

Supplies RST 1 R Transfers control to 0008 Subroutine for .-
device b

OOOF
Device x

Supplies RST 7H Transfers control to 0038 I Sub'routine for ..
device x

6-3
003F

occurs.

Example:

Assume that there are eight recorders transmitting data to the CPU. The
recorders have device numbers 6 through D, plus a common device number E,
via which an identifying signal can be sent. The controller for each of the
eight recorders requests a program interrupt when data is ready to be transmitted
to the CPU. When the CPU acknowledges the interrupt, the controller
supplies the instruction:

RST 3

and transmits to device address OEH the data byte:

000000018 for device 1
000000108 for device 2
000001008 for device 3
000010008 for device 4
000 I 00008 for device 5
001000008 for device 6
010000008 for device 7
100000008 for device 8

Everything described so far is a function of hardware design, and while the
programmer must know about it, he cannot change it in any way.

When anyone of the eight recorders causes an interrupt, a jump to memory location
OOlOH is forced. At this location the following five byte routine is located:

BACK:

IN
IMP
RET

OEH
START

read the identifying data byte from device OEH
jump to the branch table pseudosubroutine
all service routines return here

Pseudosubroutine START is described in Section 5.1.

Thus eight devices have been serviced via one interrupt service routine.

6-4

Note that, if the intenupted program was using the accumulator, erroneous
results could occur when a RETURN was made. This problem can be avoided
by requiring the interrupt routines to save the accumulator in memory, and
restore it before returning to the interrupted routine.

6-5

APPENDIX "A"

- - INSTRUCTION SUMMARY- -

This appendix provides a summary of INTELLEC 8 assembly language instructions.
Abbreviations used are as follows:

A

A
n

ADDR

Carry

CODE

DATA

DST

EXP

LABEL:

M

Parity

PC

REGM

sign

SRC

STK

zero

The accumulator (register A)

Bit n of the accumulator contents, where n may have any value
from 0 to 7.

Any memory address

The carry bit

An operation code

Any byte of data

Destination register or memory byte

A constant or mathematical expression

Any instruction label

A memory byte

The parity bit

Program Counter

Any register or memory byte

The sign bit

Source register or memory byte

Top stack register

The zero bit

A-l

(] An optional field enclosed by brackets

() Contents of register or memory byte enclosed by brackets

~ Replace left hand side with right hand side of arrow

A.I SINGLE REGISTER INSTRUCTIONS

Format;

(LABEL:] OODE REGM

Note: REGM yl A or M

Code Description

INR (REGM) -(REGM) +1 Increment register REGM
DCR (REGM) - (REGM) -1 Decrement register REGM

Condition bits affected: Zero, sign, parity

A.2 MOV INSTRUCTIONS

Format;

[LABEL:] MOV DST,SRC

Note SRC and DST not both =M

Code DESCRIPTION

MOV (DST) • (BRC) Load register DST from register BRC

Condition bits affected: None

A-2

A.3 REGISTER OR MEMORY TO ACCUMULATOR INSTRUCTIONS

Fonnat;

(LABEL:] CODE REGM

~Code DESCRIPTION

ADD (A)-(A) + (REGM) Add REGM to accumulator
ADO (A) - (A) + (REGM) + (carry) Add REGM plus carry bit to

accumulator

SUB (A) -(A) - (REGM) Subtract REGM from accumulator
SBB (A)-(A) - (REGM) - ('carry) Subtract REGM minus carry

ANA (A) - (A) AND (REGM) AND accumulator with REGM
XRA (A)-(A) XOR (REGM) Exclusive-OR accumulator

with REGM
ORA (A) -(A) OR (REGM) OR accumulator with REGM
CMP Condition bits set by (A) - (REGM) Compare REGM with accumulator

Condition bits affected:

ADD, ADC, SUB, SBB : Carry, sign; zero, parity

ANA, XRA, DRA : Sign, zero, parity.

CMP: Carry, sign, zero, parity.

A-3

Carry is zeroed.

Zero set if (A) = (REGM)
Carry reset if (A) < (REGM)
Carry set if (A) ~ (REGM)

A.4 ROTATE ACCUMUlATOR INSTRUCTIONS

Fonnatj

[LABEL.] CODE REGM

CODE DESCRIPTION

RLC (carry) -A7, An+l,-An , AO -A7 Set carry = Al , rotate
accumulator eft

RRC (carry) -AO' An -An+l, A7-AO Set carry =AO' rotate
accumulator right

RAL A +1-A , (carry) -A7 ' AO-(carry) Rotate accumulator
n n right through the carry

RAR A --A +1, (cany)-AO' ~-(carry) Rotate accumulator
n n left through the carry

Condition bits affected: Carry

A.5 IMMEDIATE INSTRUCTIONS

Formatj

r LABEL:] MVI REGM, DATA

- or-

[LABEL:] CODE REGM

A-4

CODE DESCRIPTION

MVl (REGM) • DATA Move immediate DATA into REGM
ADI (A)-(A) + DATA Add immediate data to accumulator
ACI (A)- (A) + DATA+ (carry) Add immediate data + carry to

accumulator
sur (A)-(A) - DATA Subtract immediate data from

accumulator
ssr (A)-(A) - DATA - (carry) Subtract immediate data and carry

from accumulator

ANI (A)-(A) AND DATA AND accumulator with immediat e
data

XRI (A)-(A) XOR DATA Exclusive-OR accumulator with
immediate data

ORI (A)-(A) OR DATA OR accumulator with immediate data
cpr Condition bits set by (A) - DATA Compare immediate data with

accumulator

Condition bits affected:

MVI: None
ADI, ACI, SUI, Sal : Carry, sign, zero, parity
ANI, XRI, ORr: Zero, sign, parity. Carry is zeroed.
CPI: Carry, sign, zero, parity Zero set if (A) = DATA

Carry reset if (A) < DATA
Carry set 1£ (A) ~ DATA

A-S

A.6 JUMP INSTRUCTIONS

Format;

[LABEL:] CODE ADDR

CODE DESCRIPTION

IMP (PC)-ADDR Jump to location ADDR
IC If (carry) =1, (PC)-ADDR

If (carry) =0 ,(PC) -(PC)+3 Jump to ADDR if carry set
INC If (carry) =0, (PC) -ADDR

If (carry) =1, (PC) - (PC)+3 Jump to ADDR if carry reset
JZ If (zero) =1, (PC) -ADDR

If (zero) =0, (PC) -(PC)+3 Jump to ADDR of zero set
JNZ If (zero) =0, (PC) -ADDR

If (zero) =1, (PC) -(PC)+3 Jump to ADDR if zero reset
JP If (sign) =0, (PC) -ADDR

If (sign) =1, (PC) -(PC)+3 Jump to ADDR if plus
1M If (sign) =1, (PC) -ADDR

If (sign) =0, (PC) - (PC)+3 Jump to ADDR if minus
JPE If (parity) =1, (PC) - ADDR

If (parity) =0, (PC) - (PC)+3 Jump to ADDR if parity even
JPO If (parity) -0, (PC) - ADDR

If (parity) -1, (PC) - (PC)+3 Jump to ADDR 1f parity odd

Condition bits affected: None

A-6

A. 7 CALL INSTRUCTIONS

Fonnat;

CODE

CALL

[LABEL: J CODE

DESCRIPTION

(STK)-(PC), (PC)-ADDR

ADDR

Call subroutine and push
retum address onto stack

CC If (carry) = I, (STK)-(PC), (PC) - (AD DR)
If (carry) =0, (PC)-(PC)+3 Call subroutine if carry set

CNC If (carry) =0, (STK)-(PC), (PC)- (ADDR)
If (carry) =1, (PC)-(PC)+3 Call subroutine if carry reset

CZ If (zero) = I, (STK)-{PC), (PC) -(ADDR)
If (zero) = Q (PC) -(PC)+3 Call subroutine if zero set

CNZ If (zero) = 0, (STK) - (PC) , (PC)- (ADDR)
If (zero) :01 1, (PC) - (PC)+3 Call subroutine if zero reset

CP If (sign) = Q (STK) -(PC), (PC)- (ADDR)
If (sign) = 1 (PC)- (PC)+3 Call subroutine if sign plus

CM If (sign) =- 1 (STK)-(PC), (PC) -(ADDR)
If (sign) = 0 (PC)- (PC)+3 Call subroutine if sign minus

CPE If (parity)= 1 (STK)-(PC), (PC) -(ADDR)
If (parity)=O (PC)-(PC)+3 Call subroutine if parity even

CPO If (parity)=O (STK)-(PC), (PC)-(ADDR)
If (parity)=l (PC)-(PC)+3 Call subroutine if parity odd

Condition bits affected: None

A-7

A. B RETURN INSTRUCTIONS

Format;

[LABEL;] CODE

CODE DESCRIPTION

RET (PC) • STK Return from subroutine
RC If (carry) =1, (PC)-STK

If (carry)=O, (PC)-(PC)+3 Return if carry set
RNC If (carry)=0 , (PC)-STK

If (carry)=1, (PC)-(PC)+3 Return if carry reset
RZ If (zero) =1, (PC)-STK

If (zero) =0 t (PC) - (~C)+3 Return if zero set
RNZ If (zero) =0, (PC)- STK

If (zero) =1, (PC) - (PC)+3 Return if zero reset
RM If (sign)= 1, (PC)-STK

If (sign) =0, (PC) -(PC)+3 Return if minus
RP If (sign) =0, (PC)-STK

If (:Sign) =l, (PC) -(PC)+3 Return if plus
RPE If (parii~=1 (PC)-STK

If (parity)=O I (PC) - (PC)+3 Return if parity even
RPO If (p,ar1tY+=O I (PC)-STK

If (parity)-l, (PC) - (PC)+3 Return if parity odd

Condition bits affected: None

A'" a

A.9 RST INSTRUCTION

Format:

[LABEL:] RST EXP

Note: O~ EXP ~ 7

CODE DESCRIPTION
I

RST (STl<) -(PC) t
(PC) --- OOOOOOOOEXPOOOB Call subroutine at address'

specified by EXP t
1

Condition bits affected: None

A.I0 INPUT/OUTPUT INSTRUCTIONS

Format:

(LABEL: J CODE EXP

Note: For IN, 0 ~ EXP ~ 7
For OUT, 8 ~ EXP ~ 31

CODE DESCRIPTION

IN (A) • input device Read a byte from device
EXP into the accumulator

OUT output device • (A) Send the accumulator
contents to device EXP

Condition bits affected.: None

A-9

PSEUDO - INSTRUCTIONS

A.II ORG PSEUDO - INSTRUCTION

Format:

ORG EXP

Code De scription

ORG LOCATION COUNTER ... EXP Set As sembler lo-
cation counter to
EXP

A.I2 EOU PSEUDO- INSTRUCTION

Format:

LABEL EQU EXP

Code Description

EOU LABEL .. EXP Assign the value EXP to the
symbol LABEL.

A.13 SET PSEUDO - INSTRUCTION

Format:

LABEL SET EXP

A-IO

Code Description

SET LABEL .. - EXP Assign the value EXP to the symbol
LABEL, which may have been pre-
viously SET.

A.14 END PSEUDO - INSTRUCTION

Format:

END

Code Description

END End the assembly.

A.IS CONDITIONAL ASSEMBLY PSEUDO - INSTRUCTIONS

Format:

IF EXP
-and-

ENDIF

A-ll

Code De sCription

IF If EXP =0, ignore assembler statements until ENDIF
is reached. Otherwise, continue a ssembling statements.

ENDIF End range of preceding IF.

A.I6 MACRO DEFINITION PSEUDO - INSTRUCTIONS

Format:

NAME MACRO LIST

-and-

ENDM

Code Description

MACRO Define a macro named NAME with parameters
LIST

ENDM End macro definition

A-12

APPENDIX "B "

- - INSTRUCTION MACHINE CODES - -

In order to help the programmer examine memory when debugging programs, this
appendix provides the assembly language instruction represented by each of
the 256 possible instruction code bytes.

Where an instruction occupies two bytes (immediate instruction) or three
bytes (jump instruction), only the first (code) byte is given.

8-1

DEC OCTAL HEX MNEMONIC COMMENT

0 000 00 HLT
1 001 01
2 002 02 RLC
3 003 03 RNC
4 004 04 ADI EXP
5 005 05 RST EXP
6 006 06 MVI A, EXP
7 007 07 RET
8 010 08 INR B
9 011 09 DCRB
10 012 OA RRC
11 013 OB RNZ
12 014 OC ACI EXP
13 015 OD RST EX~ EXP -1
14 016 OE MVI B, EXP
15 017 OF RET
16 020 10 INR C
17 021 11 DCRC
18 022 12 RAL
19 023 13 RP
20 024 14 SUI EXP
21 025 15 RST EXP EXP -2
22 026 16 MVI C, EXP
23 027 17 RET
24 030 . 18 INR D
25 031 19 DORD
26 032 lA RAR
27 033 IB RPO
28 034 lC SBr EXP
29 035 ID RST EXP EXP -3
30 036 IE· Mvr D, EXP
31 037 IF RET
32 040 20 INR E
33 041 21 DCR E
34 042 22
35 043 23 RC
36 044 24 ANI EXP
37 045 25 RST EXP EXP -4
38 046 26 MVI E, EXP
39 047 27
40 050 28 INR H

B-2

DEO OCTAL HEX MNEMONIC COMMENT

41 051 29 DCRH
42 052 2A
43 053 28 RZ
44 054 2C XRI EXP "

45 055 2D RST EXP EXP -5
46 056 2E MVI H, EXP
47 057 2F
48 060 30 INRL
49 061 31 DCRL
50 062 32
51 063 33 RM
52 064 34 ORI EXP
53 065 35 RST EXP EXP -6
54 066 36 MVI L, EXP
55 067 37 RET
56 070 38
57 071 39
58 072 3A
59 073 38 RPE
60 074 3C CPI EXP
61 075 3D RST EXP EXP -7
62 076 3E MVIM, EXP
6-3 077 3F RET
64 100 40 INC EXP
65 101 41 IN EXP EXP -0
66 102 42 ONe EXP
67 103 43 IN EXP EXP -I
68 104 44 IMP EXP
69 105 45 IN EXP EXP -=2
70 106 46 CALL EXP
71 107 47 IN EXP EXP -3
72 110 48 INZ EXP
73 III 49 IN EXP EXP -4
74 112 4A CNZ EXP
75 113 48 IN EXP EXP -5
76 114 40
77 115 4D IN EXP EXP =6
78 116 4E
79 117 4F IN EXP EXP -7
80 120 50 IP EXP
81 W 51 OUT EXP BXP -8

8-3

DEC OCTAL HEX MNEMONIC COMMENT

82 122 52 CP EXP
83 123 53 OUT EXP EXP e.9
84 124 54
85 125 55 OUT EXP EXP =10
86 126 56
87 127 57 OUT EXP EXP =11
88 130 58 IPO EXP
89 131 59 OUT EXP EXP =12
90 132 SA CPO EXP
91 133 58 OUT EXP EXP =13
92 134 5C
93 135 5D OUT EXP EXP =14
94 136 5E
9S 137 SF OUT EXP EXP =15
96 140 60 lC EXP
97 141 61 OUT EXP EXP =16
90 142 62 CC EXP
99 143 63 OUT EXP EXP .. 17
100 144 64
101 145 65 OUT EXP EXP =18
102 146 66
103 147 67 OUT EXP EXP =19.
104 150 68 lZ EXP
105 151 69 OUT EXP EXP =20
106 152 6A CZ EXP
107 153 68 OUT EXP EXP =21
108 154 6C
109 ISS 6D OUT EXP EXP =22
110 156 6E
111 1S7 6F OUT EXP EXP ~23

112 160 70 1M EXP
113 161 71 OUT EXP EXP =24
114 162 72 CM EXP
115 163 73 OUT EXP EXP =25
116 164 74
117 165 75 OUT EXP EXP =26
118 166 76
119 167 77 OUT EXP EXP =27
120 170 78 JPE EXP.
121 171 79 OUT EXP EXP =28
122 172 7A OPE EXP

8-4

DEC OCTAL HEX MNEMONIC COMMENT

123 173 7B OUT EXP EXP =29
124 174 7C
125 175 7D OUT EXP EXP =30
126 176 7E
127 177 7F OUT EXP EXP =31

128 200 80 ADD A
129 201 81 ADD B
130 202 82 ADD C
131 203 83 ADD D
132 204 84 ADD E
133 205 85 ADD H
134 206 86 ADD L
135 207 87 ADD M
136 210 88 ADC A
137 211 89 ADC B
138 212 BA ADC C
139 213 8B ADC D
140 214 BC ADC E
141 215 8D ADC H
142 216 8E ADC L
143 217 8F ADC M
144 220 90 SUB A
145 221 91 SUB B
146 222 92 SUB C
147 223 93 SUB D
148 224 94 SUB E
149 225 95 SUB H
150 226 96 SUB L
151 227 97 SUB M
152 230 98 SBB A
153 231 99 SBB B
154 232 9A SBB C
155 233 93 SBa D
156 234 9C SBB E
157 235 9D SBa H
158 236 9E SBB L
159 237 9F SBB M
160 240 AO ANA A
161 241 Al ANAB
162 242 A2 ANAC
163 243 A3 ANAD

B-5

DEC OCTAL HEX MNEMONIC COMMENT

164 244 A4 ANA E
165 245 AS ANAH
166 246 A6 ANAL
167 247 A7 ANAM
168 250 A8 XRA A
169 251 A9 XRA B
170 252 AA XRA C
171 253 AB XRA D
172 254 AC XRA E
173 255 AD XRA H
174 256 AE XRA L
175 257 AF XRA M
176 260 BO ORA A
177 261 B1 ORA A
178 262 B2 ORAC
179 263 B3 ORA D
180 264 B4 ORA E
181 265 B5 ORA H
182 266 B6 ORA L
183 267 B7 ORAM
184 270 B8 CMPA
185 271 B9 CMPB
186 272 BA CMPC
187 273 BB OMPD
188 274 BC OMPE
189 275 BD CMP H
190 276 BE OMPL
191 277 BF CMPM
192 300 CO Nap
193 301 C1 MOV A,B

194 302 02 MOV A,e
195 303 03 Mav A,D
196 304 C4 MOV A,E
197 305 05 Mav A,R
198 306 06 Mav A,L
199 307 C7 Mav A,M
200 310 C8 MOV A,B
201 311 C9 MOV B,B
202 312 OA MOV B/e

203 313 CB MOV B,D

204 314 CC MOV B/E

8-6

DEC OCTAL HEX MNEMONIC COMMENT

205 315 CD MOV B,H
206 316 CE MOV B,L
207 317 CF MOV B,M
208 320 DO MOV C,A
209 32l Dl MOV C,B
210 322 D2 MOV c,e
211 323 D3 MOV O,D
212 324 D4 MOVe,E
213 325 D5 Move,H
214 326 D6 MOV e,L
215 327 D7 Move,M
216 330 D8 MOV O,A
217 331 D9 MOV D,B
218 332 DA MOV D,e
219 333 DB MOV D,D
220 334 DC MOV D,E
221 335 DD MOV D,H
222 336 DE MOV O,L
223 337 DF MOV D,M
224 340 EO MOV E,A
225 341 El MOV E,B
226 342 E2 MOV E,e
227 343 E3 MOV E,D
228 344 E4 MOV E,E
229 345 E5 MOV E,H
230 346 E6 MOV E,L
231 347 E7 MOV E,M
232 350 E8 MOV H,A
233 351 E9 MOV H,B
234 352 EA MOV H,C
235 353 EB MOV H,D
236 354 EC MOV H, E
237 355 ED MOV H,H
238 356 EE MOV H,L
239 357 EF MOV H,M
240 360 FO MOV L,A
241 361 Fl MOV L,B
242 362 F2 MOV L,C
243 363 F3 MOV L,D
244 364 F4 MOV L,E
245 365 F5 MOVL,H

B-7

DEC OCTAL HEX MNEMONIC COMMENT

246 366 F6 MOV L,L
247 367 F7 MOV L,M
248 370 F8 MOV M,A
249 371 F9 MOV M,B
250 372 FA MOV M,C
251 373 FB MOV M,D
252 374 FC MOV M,E
253 375 FD MOV M,H
254 376 FE MOV M,L
255 377 FF -

8-8

APPENDIX "C"

- - INSTRUCTION EXECUTION TIM ES - -

The number of machine cycles needed to complete each INTELLEC 8 instruction
is given in this appendix. The time required to complete on INTELLEC 8
machine cycle is 12.5 microseconds.

INSTRUCTION CYCLES

ACI 2
ADD 1 2 cycles if memory is referenced
ADC 1 2 cycles if memory is referenced
ADI 2
ANA· 1 2 cycles if memory is referenced
ANI 2
All CALL in struction s 3
GP 1 2 cycles if memory is referenced
CPI 2
DCR 1
HLT 1
IN 2
INR 1
All JUMP instructions 3
MOV 1 2 cycles if memory is referenced
MVI 2 3 cycles if memory is referenced
OR 1 2 cycles if memory is referenced
OR! 2
OUT 2
RAL 1
RAR 1
Al1 RETURN instructions 1
RLC 1
RRC 1
RST 1
SBB 1 2 cycles if memory Is referenced
SBI 2
SUB 1 2 cycles if memory is referenced
SUI 1
XOR 1 . 2 cycles if memory is referenced ,
XRI 2

C-l

APPENDIX "0"

-- ASCII TABLE--

The 8008 uses a seven-bit ASCII code, which is the normal 8 bit ASCII code
with the parity (high order) bit always reset.

Graphic or Control

NULL
SOM
EOA
EOM
EaT
WRU
RU
BELL
FE
H.Tab
Line Feed
V. Tab
Form
Return
SO
S1
DCa
X-On
Tape Aux~ On
X-Off
Tape Aux. Off
Error
Sync
LEM
SO
81
S2
S3
S4
S5
S6
S7

0-1

ASCII (Hexadecimal)

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
lA
IB
lC
ID
IE
IF

Graphic Of' Control ASCII Hexadecimal

ACK 7C
Alt. Mode 7D
Rubout \ 7F

21
II 22

23

$ 24

% 25

& 26
27

(28
) 29

* 2A

+ 2B
2C
2D
2E

/ 2F ..

3A
3B

(3C

= 3D
) 3E

? 3F
[5B

/ 5C
] 5D

~ 5E
~ SF
@ 40
blank 20

0 30
1 31
2 32
3 33
4 34
5 35
6 36
7 37
8 38
9 39

D-2

Graphic or Control ASCII Hexadecimal

A 41
B 42
C 43
D 44
E 45
F 46
G 47
H 48
I 49
J 4A
K 4B
L 4C
M 4D
N 4E
a 4F
p 50
0 51
R 52
S 53
T 54
U 55
V 56
W 57
X 58
y 59
Z SA

D-3

APPENDIX "E"

-- BINARY-DECIMAL-HEXADECIMAL CONVERSION TABLES loll.

£-1

POWERS OF TWO

:t..~£:..
I 0 1.0
2 I O.S

" 2 0,25

• • 0.125

I, • '.062 ,
n ,

'.031 " .. 6 0.015 625
121 7 0.007 112 S

256 • 0.003 906 25
512 , 0.001 'SJ 125

102' 10 0.000 976 562 5
2 0<11 " 0.000 _ 281 25

"ON 12 0.000 2 .. 1.0 62S
8192 13 0.000 122 070 312 S " 0.000 061 035 156 IS

32 761 15 0.000 OJO Sl7 S7I US

65 536 " 0.000 OIS 251 ,., 062 5
1.1072 17 0.000 007 629 39. 531 25
262 I .. " 0.000 003 II. "7 265 625
».2. I' 0.000 001 907 341 637 112 5

I 0<11 576 20 0.000 000 ." 67. 316 406 U
2097 152 21 0.000 000 .7, 8V 151 103 "5
• I,. 3N 12 0.000 000 251 ... 57f 101 5" 5 ._- 23 0.000 000 II. 20f 219 S:lO 711 25

"m '16 ,. 0.000 000 059 604 ... 775 3fO 6U
33 '54 432 2S 0.000 000 on 102 321 JI1 "" .12 5
.7 I J6 0.000 000 01. 901 161 193 I., 656 25

134 217 721 27 0.000 000 007 4SO 5IQ '" 923 121 liS

'61 '35 "56 21 0.000 000 003 725 2fO 2fI .. I f14 062 S
S36 170 912 2f 0.000 000 001 162 .. 5 I.' 230 ." 031 25

I 0731.1 12. 30 0.000 000 000 .31 322 51. 6IS .71 SIS ,,,
, 147413 31 0.000 000 000 .., 661 217 307 7)9 257 112 S

" 2f. f61 2f6 32 0.000 000 000 m .30 .. 3 653 ... 621 906 25
1.934m 33 0.000 000 000 II, .IS 311 116 .34 114 .» 125

17179 '" 114 34 0.000 000 000 051 207 6t I "3 467 .07 216 562 5
,. ". 7. 361 35 0.000 000 000 on 103 13. 456 733 703 613 211 25

.. '19 ." 736 36 0.000 000 000 014 551 "S 221 366 1'51 106 625
137'" '53 4" 37 0.000 000 000 007 275 9" 3 '25 903 320 312 5
274 177 906 , .. • 0.000000 000 003 637 '71107 091 7129$1 660 156 25
'49 755 I"'")9 0.000 000 000 001 III ,., 403 54' IS, .,S .30 071 12S

I 099 511 '27 "6 .0 0.000 000 000 000 909 4" 701 772 921 2V 'IS 039 062 5
2 If' 023 US 55' 41 0.000 000 000 000 "54 7.7 3SO III '57 5.9 531 U
4 198 046 511 104 42 0.000 000 000 000 227 373 675 .. 3 232 0" .78 7" 765 625
I 796 Of3 022 2. 43 0.000 000 000 000 113 ... 8V 721 '" 02f 7)9 379 .2 112 5

17 S92 116 0.. 4.. .. 0.000 000 000 000 056 143 411 160 ICII 014 .. , 619 '" 406 25
35 114 372 011 132 4' 0.000 000 OlIO 000 021 '21 709 .30 404 007 434 70 703 125
70 361 7 .. 177.... 46 0.000 000 000 000 014 210 154 71S 202 003 717 "22 41' 3,. 562 5

140 737 ... 355 321 .7 0.000 000 000 000 007 105 '27 357 601 001 I. 711 2.2 675 711 25

281 .7. 976 710 656 41 0.000 000 C1CIO 000 003 552 713 671 100 500 '" 355 621 337 IfO 625
561 '49 953 421 312 4' 0.000 000 000 000 001 77' 356 1)9 400 2SO " .. 677 110 ... '" 312 5

I 125 199 906 14' 62' so 0.000 000 000 000 000 I.. 171 ." 700 125 232 338 905 3J<I 472 65. 25
2 251 799 813 615'41 51 0.000 000 000 000 000 4 •• CII9 20f ISO 062 616 " •• 52 667 236 321 125

• SOl 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 Oll 301 •• 716 3ll 61. 164 062 5
9 007 I" 254 740"' 53 0.000 000 000 000 000 III 022 302 462 SIS 6,.. 042 363 166 109 012 031 25

1801. 398 509 '" fl. 54 0.000 000 000 000 000 055 511 ISllll 257827021 III 583'404 541 015625
36 021 7f7 Oil '63 961 " 0.000 000 000 000 000 027 755 575 ,15 621 "3 SlO 5fO 791 702 270 S07 112 5

n 057 59. 037 927'36 56 0.000 000 000 000 000 013 177 717 107 II. 456 ,,, 295)95 I" 135 253 906 25
U' lIS I" 075 US 172 51 0.000 000 000 000 000 006 '. 193 903 91." 22. 377 6.7 "7 925 567 626 '53 125
'II 230 37, lSI 711 744 51 0.000 000 000 000 000 003 "" 4" 9S1 953 614 III 123 '4' 962 713 113 .76 562 5
S76 460 752 303 423... " 0.000 000 000 000 000 001 734 7n 47S "6 107 Of4 411 92. 411)91 906 738211 25

1 152 921 504 606 1""6 60 0.000 000 000 000 000 000"7361 7V 9U 403 547205 ." 240 695 9S3 369 140 625
2 lOS 8.3 009 213 .93 '52 ,I 0.000 000 000 000 000 000 433 610 ... "4 101 773602 tel 120 347 '" 61. S70 312 J
• ,II ... Oil 427 317 f04 62 0.000 000 000 000 000 000 216 434 .• '7 100 ... 101 4fO 560 1739U 342 21S 156 IS
, 213 372 * .54 77S 101 6:1 0.000 000 000 000 GOO 000 ICII 420 117 2. PI .. 3 _ '45 JIO 016 "4 171 142 S71IIS

TABLE OF POWERS OF SIXTEEN 1 0

16" " 16-"

0 0.10000 00000 00000 00000 " 10

16 1 0.62500 00000 00000 00000 • 10- 1

256 2 0.39062 50000 00000 00000 "
10-2

4 096 3 0.24414 06250 00000 00000 "
10-3

65 536 4 0.15258 78906 25000 00000 • 10-4

048 576 5 0.95361 43164 06250 00000 "
10-6

16 777 216 6 0.59604 64477 53906 25000 II 10. '

268 435 456 1 0.31252 90298 46191 40625 II 10.8

4 294 961 296 8 0.23283 06436 53869 62891 • 10-9

68 719 476 136 9 0.14551 91522 83668 51801 • 10- 10

099 511 627 776 10 0.90949 47017 72928 23792 • 10- 12

17 592 186 044 416 11 0.56843 41886 08080 14870 • 10- 13

281 04 976 "0 656 12 0.35527 13678 80050 09294 I(10- 14

4 .503 599 627 370 "6 13 0.22204 46049 25031 30808 • 10- 15

72 057 594 037 927 936 14 0.13877 18780 78144 5675' I(10- 16

152 921 504 606 846 976 IS 0.86736 17379 88403 54721 II 10. 18

TAB'I' or POWI"Il:; or 10
·16

10" "
lO-1t-

0 LOOOO 0000 0000 0000

A 1 0.1999 9999 9999 999A

64 2 0.28F 5 C28F 5C21 fSC3 • 16- 1

3E 8, 3 0 .• 189 310 C6Al EF9E
' -2

II 16

2710 ... 0.6808 88AC 710C 8296 II 16~3

1 86AO 5 0.A7C5 At41 1847 .. 23 • 16- 4

f 41240 6 0..10C6 F7AO 15E 0 8037 • 16-4

98 9680 7 0.IA07 F29A 8CAF 4858 • 16-5

SF5 EIOO 8 0.2AF 3 IOC4 6118 738F • 16-6

389A CAOO 9 0.4488 2fAO USA 52CC II 16-7

2 HOI E400 10 0.6 OF 3 7F67 5H6 EAOF • 16",8

17 4876 E800 " D.AFE 8 FF08 C824 AAFF "
16-9

E8 04A5 1000 12 O.t 191 998 I 20EA I I 19 II 16-9

916 .aE 72 AOOO 13 0.IC2S C268 4976 81C2 "
16- Ut

SAF3 107A 4000 14 0.2009 3700 4257 3604 "
16-1 I

3 807£ A4C6 8000 IS, 0 .. 80E 8E71 9058 5660 • 16- 12

23 8652 6FCI 0000 16 0.7~4A CMF 6226 FOAE)I 16- 13

163 .578 S08A 0000 11 0.8877 M32 36A4 1449 II 16- 14

OEO "13 A764 0000 18 0.1272 5001 0243 A8Al • 16- 14

8N:.7 230. 89£1 0000 19 0.1083 C94F I6D2 AC35 • 16- 15

HEXADECIMAL·OECIMAlINTEGER CONVERSIDN
, the table below provide. ror direct conver.lon. bet_en Mxa-

cfeclmollnteger .. ln the range O-FFF and decimal Integenln
the range 0-4095. For conversion or larger Integer., the
table values Il101 b. odded to the rollawlng figure.:

Hexadecimal Decimal Hexadecimal Decimal -
01 0\)0 4096 20000 131072
02000 8192 30000 196 608
03000 12288 40000 262 I'"
04000 16384 50000 321680
05000 20480. 60000 393 216
06 000 24576 70000 ' 458752
07000 28672 80000 524288
08000 32768 90000 589824
09000 36 864 AOooo 655360
0A000 40960 80000 720 896
08000 45056 co 000 786 432
oe 000 49152 00000 asl968
OQooo 53248 EO 000' 911504
OE 000 51344 FO 000 983040
OF 000 61440 100 000 I 048576
10000 65536 200 000 2097152
11000 69632 300 000 3 145728
12000 73128 400 000 4194304
13000 77824 SOO 000 .5 242 880
14000 81920 600 000 6291456
15000 86 016 100 000 1340032
16000 90 112 800 000 8388 608
11000 94208 900000 9431184
18000 98304 AOOooo 10 4as 760
19000 102400 BOO 000 11534 336
IA 000 106 496 COO 000 12582912
11000 110592 000000 13631488
1(000 114688 EOOooo 14680 ()6.4
10000 '18714 FOOooo 15728640
IE 000 122880 , 000 000 16717 216
IF 000 126 916 2000000 33"4432

0 I 2 3 4 5 6 7 8 9 A • C 0 E F

000 0000 0001 0002 0003 0004 0005 0006 0001 0008 0009 0010 0011 0012 0013 0014 0015
010 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0021 0028 0029 0030 0031
020 0032 0033 0034 0035 0036 0031 0038 0039 0040 0041 0042 0043 00« 0045 0046 0047
030 0048 0049 0050 0051 0052 0053 0054 00S5 0056 0057 0058 0059 0060 0061 0062 0063

040 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0014 0075 0076 0077 0078 0079
050 0080 0081 0082 0083 0084 0085 0006 0087 0088 0089 0090 0091 0092 0093 0094 0095
060 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
07.() 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123, 0124 012.5 0126 0127

080 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 0144 0145 0146 0147 01"8 0149 o ISO 0151 0152 0153 OJ54 0155 0156 0157 0158 0159
OAO 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0114 017S
080 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191

oeo 0192 0193 0194 019$ 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
000 0208 0209 0210 0211 0212 0213 021" 0215 0216 0217 0218 0219 0220 0221 0222 0223
OEO 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
nFO 0240 0241 0242 0243 8244 0245 02<46 0247 0248 0249 02S0 ~I 0252 0253 0254 OW

' '

\

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont.)

0 I 2 3 4 5 6 7 8 9 A 8 C 0 E F

100 0256 0257 0258 0259 0260 0261 0262 0263 0264 026.5 0266 0267 0268 0269 0270 0271
110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 03304 0335
150 OJJ6 0337 0338 0339 0340 0341 0342 0343 03 OJ.45 0346 0347 0348 0349 0350 0351
160 0352 03.53 0354 0355 03.56 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

IBO 03~-4 0385 0386 0387 0388 0389 0390 0391 0392 0393 039-4 0395 0396 0397 0398 0399
19() 0-400 0-401 0402 0403 0404 O~ 0-406 0407 0-408 0409 0-410 0-411 0-412 0-413 0-414 0415
lAO 0416 0417 0418 0-419 0420 0421 0422 0423 0424 0-425 0-426 0427 0428 0429 0-430 0-431
ISO 0-432 0433 0-4304 0-435 0-436 0437 0438 0439 0 0 0441 0442 0443 04-44 0-445 0-446 0447

lcO 0 8 0449 0450 0-451 0452 0453 0-45-4 0455 0456 0-457 0-458 0-459 0-460 0461 0462 0463
100 0464 0-465 0466 0467 0-468 0-469 0-470 0-471 0-471 0-473 0-474 0475 0476 04;7 00178 0479
lEO 0480 0-481 04B2 0-483 0-484 0-485 0486 0487 04B8 0-489 0-490 0491 0497 0493 0-494 0-495
IFO 0496 0497 0-498 0499 0500 0501 0502 0503 050-4 0505 0506 0507 0508 0509 0510 0511

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0521 0523 0524 0525 0526 0527
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 054-4 0545 0546 0547 05-48 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 059() 0591
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 060-4 0605 0606 0607
260 0608 0609 0610 0611 0612 0613 061-4 0615 ~16 0617 0618 0619 0620 0621 0622 0623
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

280 0640 0641 0642 0643 ()6.4.4 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 06S6 0657 0658 0659 0660 0661 0662 ~3 0664 066.5 0666 0667 0668 0669 0670 0671
2AO 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
280 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2CO 070-4 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2DO 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 07304 0735
2EO 0736 0737 0738 0739 0740 0741 0742 0'43 07 0745 0746 0747 0748 0749 0750 0751
2FO 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831

340 0832 0833 0834 083.5 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 090S 0906 0907 0908 0909 0910 0911
390 0912 0913 091 .. 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3AO 0928 0929 0930 0931 0932 0933 093" 093.5 0936 0937 0938 0939 09"0 0941 09 .. 2 0943
380 094 .. 09045 0946 0947 0948 0949 0950 0951 0952 0953 095 .. 0955 0956 0957 0958 0959

3(0 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 09704 0975
300 0976 0977 0978 0979 0980 0981 0982 0983 09114 0985 0986 0987 0988 0989 099() 0991
3EO 0992 0993 099 .. om 0996 0991 0998 0999 1000 1001 1002 1003 1004 1005 1006 1001
3fO 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont.)

° 1 2 3 4 5 6 7 8 9 A 8 e 0 E F

400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 1072 1073 1074 1075 1CJ76 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 1104 1105 1106 1107 1108 1109 111O 1111 II 12 11 13 1114 1115 II 16 11 17 II 18 1119
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 \136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

480 \152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 \182 1183
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
480 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4(0 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4DO 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

$40 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 \.424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
SAO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
580 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5eo 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5DO 14BB 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5EO 1504 1505 1506 1507 1508 1509 1510 15 " 1512 1513 1514 1515 1516 1517 151B 1519
Sf 0 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 15BI 1582 1583
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 1616 1617 16J8 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

680 1664 1665 1666 1.667 1668 1669 1670 1671 1672 1673 1674 1675 1676 /677 1678 1679
690 1680 1681 1682 16B3 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
680 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6(0 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6DO 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1:786 1787 . 1788 1789 1790 1791

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont.)

0 1 2 3 4 5 6 7 8 9 A 8 e 0 E F

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 I 80s 1806 1807
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 IB21 1B22 1823
720 1824 1825 IB26 1827 1828 IB29 IB30 IB31 1832 1833 1834 1835 1836 IB37 1838 1839
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 IB87
760 188B 18B9 1890 IB91 1892 1893 1894 189S 1896 1897 1898 1899 1900 1901 1902 1903
770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
790 1936 1937 193B 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7AO 1952 1953 1954 1955 1956 1957 195B 1959 1960 1961 1962 1963 1964 1965 1966 1967
780 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

7eo 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
700 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7FO 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
BIO 2064 2065 2066 2067 206B 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 2080 2081 2082 2083 2084 20BS 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 210S 2106 2107 2108 2109 2110 2111

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 2144 2145 2146 2147 214B 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

880 2176 2177 2178 2179 2180 2181 2182 21B3 2184 2185 2186 2187 2188 2189 2190 2191
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8AO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
880 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 223B 2239

8eo 2240 2241 2242 2243 2244 2245 2246 2247 224B 2249 2250 2251 2252 2253 2254 2255
800 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8EO 2272 2273 2274 2275 2276 2277 227B 2279 2280 2281 2282 2283 2284 2285 2286 2287
8FO 22B8 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

900 2304 2305 2306 2307 2308 2')09 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 2336 ·2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 2352 2353 2354 2355 2356 2357 235B 2359 2360 2361 2362 2363 ·2364 2365 2366 2367

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2.(30 2431

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
980 2480 2481 2482 2483 2484 2485 2486 2487 2488 .2489 2490 2491 2492 2493 2494 2495

9(0 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
900 2512 2513 2514 251.5 2516 2517 2518 2519 2520 2521 ~522 2523 2524 2525 2526 2527
9EO 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9FO 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont.)

0 1 2 3 4 5 6 7 8 9 A 8 C 0 E r

AOO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Al0 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
AlO 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2743 2746 2747 2748 2749 2750 2751

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 27W 2798 2799
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

800 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
810 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
820 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

~

840 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
860 2912 2913 2914 2915 2916 2917 2918 2919 2920 2971 2922 2923 2924 2925 2926 2927
870 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

880 2944 2945 2946 2947 29"8 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
890 2960 2961 2962 2963 2964 296.5 2966 2967 2968 2969 2970 2971 2972 2973 297 .. 2975
8AO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2~ 2987 2988 2989 2990 2991
880 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

8CO 3008 3009 3010 3011 3012 3013 301 .. 3015 3016 3017 3018 3019 3020 3021 3022 3023
800 3024 3025 3026 3027 3Q28 3029 3030 3031 3032 3033 303" 3035 3036 3037 3038 3039
8EO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
8FO 3056 3057 3058 3059 3060 3061 3062 3063 306" 3065 3066 3067 3068 3069 3070 3071

COO 3072 3073 307" 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
C10 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
t20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3 lIS 3116 3117 3118 3119
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C40 3136 3137 3130 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 31SO 3151
C50 3152 3153 315 .. 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 3216 3217 3218 3219 3220 3221 3222 3223 322" 3225 3226 3227 3228 3229 3230 3231
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 32 .. 2 3243 32 3245 3246 3247
C80 3248 3249 3250 3251 j252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

ceo 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
COO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 33103311
CI'O 3312 331l 33'. 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont.)

0 1 2 3 4 5 6 7 8 9 A a c 0 E r 1
DOO 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
Pl0 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 ,3357 3358 3359
020 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
030 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

040 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3~ 3407
050 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3<422 3.c23
060 3<424 3425 3426 3421 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3.c38 3439
070 3440 3441 3442 3443 34 3445 J4.46 3447 3448 3449 3450 3451 3452 3453 3<454 3<455

080 3<456 3457 3458 3<45. 3460 3461 3462 3<463 3464 346S 3<466 3467 3<468 3469 3470 3471
090 3472 3.c73 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
OAO 3<488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DBO 3504 350S 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

OCO 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
Doo 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 35<46 3547 3548 3549 3550 3551
DEO 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
OFO 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 35B3

Eoo 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
EIO 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 36.57 3658 3659 3660 3661 3662 3663
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E9Q 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EBO 3760 3761 3762 3763 3764 3765 3766 3761 3168 3769 3770 3771 3772 3773 3774 3775

ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EDO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EEO 3808 3809 3810 381\ 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFO 3824 3825 3826 3827 3828 31129 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FOO 3840 3841 3842 3843 3844 3845 3846 3847 38<48 38<49 3850 3851 3852 3853 3854 3855
FlO 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 391.5 3916 3917 3918 39\9
F50 '3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 3936 3937 39311 3939 3940 3941 3942 3943 3944 3945 39<46 3947 3941 3949 3950 3951
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 40lS
FeO 4016 4017 4018 4019 4020 4021 4022 4i023 4024 4025 4026 4021 4028 4029 4030 4031

FCO 4032 4033 4034 4035 4036 4037 4038 4039 .t040 4041 4042 4043 4044 4045 4046 4047
FDO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063

FEO .a64 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 40'S 4076 4077 4078 4079
FFO 4080 4081 4082 4083 ... 4085 4086 4087 4088 4089 4090 4091 4OY'4I 4093 4094 "095

-. t _141>
In~

West: 17291 Irvine Blvd., Suite 262/(714)838·1126, TWX: 910·595·1114/Tustin, California 92680
Mid-America: 800 Southgate Office Plaza/50 1 West 78th St.I(612)835·6722, TWX: 910·576·2867 /8Ioomington, Minnesota 55437
Northeast: 2 Militia Drive, Suite 4/(617)861·1136, Telex: 92·3493/Lexington, Massachusetts 02173
Mid·Atlantic: 21 Bala Avenue/(215)664·6636/Bala Cynwyd, Pennsylvania 19004 .
Europe: Intel OfficelVester Farimagsgade 7145·1·11 5644, Telex: 19567/DK 1606 Copenhagen V
Orient: Intel Japan Corp.lHan·Ei 2nd Building/l·l, Shinjuku, Shinjuku·Ku/03·354-·8251,Telex: 781·28426/Tokyo 160 © 1973/PrintecJ in U.S.A'/MCS 329-1074-11

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-77
	3-78
	3-79
	3-80
	3-81
	3-82
	3-83
	3-84
	3-85
	3-86
	3-87
	3-88
	3-89
	3-90
	3-91
	3-92
	3-93
	3-94
	3-95
	3-96
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	6-01
	6-02
	6-03
	6-04
	6-05
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	D-01
	D-02
	D-03
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	xBack

