BYTE Reprint

Chapter 2

MACHINE LANGUAGE
PROGRAMMING FOR THE “8008”

and similar microcomputers

Reprinted from MACHINE LANGUAGE
PROGRAMMING FOR THE ‘‘8008" (and
similar microcomputers).

Author: Nat Wadsworth
Copyright 1975

Copyright 1976 — Revised
Scelbi Computer Consulting Inc
With the permission of the
copyright owner.

INITIAL STEPS FOR DEVELOPING PROGRAMS

The first task that should be done prior
to starting to write the individual instruc-
tions for a computer program is to decide
exactly what it is that the computer is to
perform and to write the goal(s) down on
paper! This statement might seem unneces-
sary to some because it is such an obvious
one. It is stated because the majority of
people learning to develop programs will
realize its significance when they discover,
halfway through the writing of a large mach-
ine language program, that they left out a
vital step. Such an error can typically result
in the programmer having to start back at
the beginning and rewrite the entire pro-
gram, The practice of writing down just
what tasks a particular program is to perform
and the steps in which they are to be done,
will save a lot of work in the long run. The
written description should be as complete
and detailed as necessary to ensure that
exactly each step of the program will be
clear when actually writing the program in
machine language. It is generally wise for
the novice programmer to take pains to be
quite detailed in the initial description.

The act of actually writing down the
proposed operation of the program desired
serves several valuable purposes. First, it
forces one to carefully review what is
planned. In doing so, it often vividly
reveals flaws in original mental ideas.
Secondly, it serves as a guide and a check
list as the machine language program is
developed. Remember, it will often take
a number of hours to write a fair sized
program. These hours might be spread over
several days or weeks. In this period of time
the human mind can easily forget original
intentions and plans if the human memory
is not refreshed by written notes. A pro-
gram that is not kept carefully organized

40

as it is developed can become a real mess.
This is especially so if one keeps forget-
ting key concepts or has to constantly
add in forgotten routines. The time wasted
by such sloppy procedures can be avoided
if proper work habits are developed from
the beginning.

Once one has written a description of
the general task(s) to be performed, and
has ascertained that there are no flaws to
the overall concepts or ideas, it is a good
idea to draw up a set of FLOW CHARTS
for the proposed program. FLOW CHARTS
are detailed written and symbolic descrip-
tive diagrams of the flow of operations
that are to occur as the program is executed.
They also show the interrelationships be-
tween different portions of a program.

Over the years a variety of symbols and
methods have been developed for creating
flow charts. All of the varieties have the same
basic purpose and most of the differences are
the result of individuals pushing their own
preferences. Most people can do admirably
well using just a few basic symbols to denote
fundamental types of operations in a com-
puter program. The small group to be pre-
sented here will enable most microcomputer
programmers to develop flow charts rapidly,
with little confusion, and without having to
learn a host of special symbols.

A CIRCLE may be used as a general
purpose symbol to specify an entry or exit
point in a routine or subroutine. Information
may be printed inside the circle. This in-
formation might denote where the routine
is coming from or going to (such as the page
number and location on a page for a program
that requires several sheets of paper to be
flow charted). It might contain transfer




information. Or, it could denote the starting
and stopping points within a program. Some
typical examples of the CIRCLE symbol
are illustrated next.

O® @O

A square or rectangel may be used to
denote a general or specific operation. The
type of operation may be described inside the
box such as illustrated in the following
examples.

| CLEAR THE ACCUMULATOR]

STORE THE
INCOMING
MESSAGE

SET
1/O
FLAGS

A diamond form may be used to symbolize
a decision or branching point in a program.
The determining factor(s) for the decision or
branching operation may be indicated inside
the symbol. The two side points of the
diamond are used to illustrate the path
taken when a decision has been made. The
diamond symbol is illustrated next.

NO YES

INFO
READY ?

YES

Lines with arrows may be used to inter-
connect the three types of symbols pre-
sented. In this way, the, symbols may be
connected to form readily understood FLOW
CHARTS of operations that are to occur
in a program and to show how various
operations relate to each other. Flow charts
are extremely valuable references when
developing programs as well as when one
wants to update or expand a program and
needs to quickly review the operation of the
program of specific interest.

An example of a flow chart for a relatively
simple program will be shown next. The pro-
gram illustrated by the flow chart is to accept
characters from an ASCII encoded electric
typewriter and send out the equivalent
character to a BAUDOT coded device. In
this illustration it is assumed that the I/O
interfaces to the machines are parallel inter-
faces (versus the possibility of being bit-
serial interfaces). Thus, complex timing
operations do not have to be discussed in
the example. A written description of the
example program could be stated as follows.

The computer is to monitor bit B7 of
INPUT PORT 01, which is the control port

Y

for an interface to an ASCII encoded elec-
tric typewriter. Whenever bit B7 on INPUT
PORT 01 goes low (logic *0°) it indicates a
new character is waiting in parallel format
from the typewriter at INPUT PORT 00.
The computer is to immediately obtain the
character that is waiting at INPUT PORT 00
and as soon as it has obtained the data it is
to send a logic ‘1’ (high) signal to bit BO of
OUTPUT PORT 11 to signal the ASCII in-
terface that the character has been accepted
by the computer. (The receipt of this signal
by the ASCII interface will then cause the
ASCII interface to restore the control signal
on bit B7 of INPUT PORT 01 to a high
(logic ‘1) condition.)

Whenever a character has been received
from the ASCII typewriter on INPUT PORT
00, the computer is to compare the charac-
ter just received against an ASCII to
BAUDOT lock-up table which is stored in the
computer’s memory until it finds a match. It
will then obtain the equivalent BAUDOT
character from the conversion table, It will
then send the BAUDOT code for the charac-
ter in bit positions B5 through B0 of
OUTPUT PORT 10. Bit B5 will serve to in-
dicate to the BAUDOT interface whether

NO

IS B7
OF INP PORT 01
A LOGIC ‘0’ ?

YES

GET ASCII
CHARACTER
A FROM INPUT
PORT 00
SEND A LOGIC ‘1" ON BO
OF OUTPUT PORT 11 TO
CLEAR THE ASCII
INTERFACE
A
GO TO LOOK-UP TABLE
ROUTINE AND FIND
THE EQUIVALENT BAUDOT
CHARACTER

SEND THE BAUDOT CODE
TO OUTPUT PORT 10 IN
BITS B5 TH

ROUGH B0

a1




INITIALIZE POINTERS TO
START OF LOOK-UP TABLE

COMPARE THE CONTENTS OF THE
CURRENT LOCATION IN THE LOOK-UP
TABLE AGAINST THE CHARACTER
PRESENTLY IN THE ACCUMULATOR

.
C

the code in bits B4 through BO is to be pro-
cessed by the BAUDOT device when it is in
the LETTERS or FIGURES mode. It is NO
assumed that the character rate (but not A

ARE THEY YES
THE SAME ?

necessarily the baud rate) is the same for both
machines so that the example may be simpli-
fied by eliminating the requirement for
character buffering or stacking in the memory
of the computer. However, in practical appli-
cations such capability might be required.
The feature could be added to the program.
However, for this case, as soon as the
BAUDOT code has been transmitted (in
parallel format) to the BAUDOT device, the
computer will simply go back to waiting for
the next character to come in from the ASCII
machine. The written description of the pro-
gram just presented is succinctly summarized
in the flow chart shown on the previous page!

The flow chart of the program shown on
the previous page could be considered an
outline of the program. Portions of that flow
chart could be expanded into more detailed
flow charts to present a detailed view of
special operations. For instance, the rectangle
labeled GO TO LOOK-UP TABLE ROUTINE
AND FIND THE EQUIVALENT BAUDOT

CHARACTER really refers to a portion of the’

program that consists of a number of opera-
tions. Those operations could be described
in a separate flow chart such as the one just
presented.

The reader can see that the expanded
flow chart illustrates the operation of the
table look-up routine portion of the program.
With a little study one can discern that the
look-up table consist of an area in memory
that has an ASCII encoded character in one
word, followed in the next word by the
same character in BAUDOT code. This
sequence continues for all the possible
characters as illustrated below. The flow
chart illustrates how the data in the look-up
table is scanned by skipping over every other
memory location (which contains the
BAUDOT codes) until the proper ASCII
character is located. When that is located,
the routine simply extracts the proper
BAUDOT code from the next memory
locaction in the table. The flow chart makes
the sequence easier to understand than a
purely verbal explanation of the routine.

ADVANCE THE
TABLE POINTER
BY TWO WORDS.

5

ADDRESS

PAGE: XX LOC: Z

PAGE: XX LOC: Z+1
PAGE: XX LOC: Z+2
PAGE: XX LOC: Z+3

PAGE: XX LOC: Z+2(N-1)
PAGE: XX LOC: Z+2(N-1)+1

HAVE FOUND THE DESIRED
CHARACTER. ADVANCE THE
POINTER TO THE NEXT WORD

IN THE TABLE AND FETCH
THE BAUDOT EQUIVALENT.

MEMORY CONTENTS

ASCII code for letter A
BAUDOT code for letter A
ASCII code for letter B
BAUDOT code for letter B

ASCII code for N'th letter
BAUDOT code for N'th letter

ILLUSTRATION OF LOOK-UP TABLE ORGANIZATION FOR THE EXAMPLE PROGRAM

It is strongly recommended that beginning
programmers develop the habit of first writing
down the function(s) of the desired program
they intend to create. Next, one should draw
up flow charts as detailed as one feels is neces-
sary to clearly show the operation of the pro-
gram that is to be developed. A novice pro-
grammer will be wise to prepare quite detailed
flow charts. More experienced programmers
may prefer to leave out details of operations
that they thoroughly understand. Flow charts
should serve as ready references when the pro-
grammer goes on to actually develop the step-
by-step machine language instruction sequen-
ces for the computer.

Flow charts are also an excellent method

for communicating programming concepts
to fellow computer technologists.
Remember that general flow charts do not
have to be machine specific') Learning how
to prepare and read flow charts is an
important (yet easy) skill for all computer
programmers to acquire. It can also be fun
and a highly creative process. Using the
technique, one may review the overall
operation of a program under development
and gain new insights into where to
interconnect routines, where common loops
exist (which can save valuable memory room
if they are subroutined), and find other ways
in which to enhance a program’s
capabilities.

Chapter 3 of MACHINE LANGUAGE PROGRAMMING FOR THE “8008" (and
similar microcomputers) will appear in the September BYTE.

42




